# Towards lattice-assisted hadron physics calculations based on gauge-fixed *n*-point functions

#### André Sternbeck

Friedrich-Schiller-Universität Jena, Germany

in collaboration with

M. Leutnant (Jena) and G. Eichmann (Lisbon)

"Mapping Parton Distribution Amplitudes and Functions" ECT\* Workshop, September 2018, Trento, Italy

イロト イポト イモト イモト

1 / 29

# Motivation

## Research in hadron physics / QCD thermodynamics

- lattice QCD currently preferred tool to provide theoretical estimates
- full control over systematic error, hard/expensive in practice
- New: PDFs and PDAs available via quasi-function/amplitudes
- Many new studies recently, requires much effort (see, e.g., LaMET, ETMC or RQCD approach)

#### Lattice is not the only nonperturbative framework

- Bound-state / Dyson-Schwinger equations
- Functional Renormalization group
- Pros/Cons different to lattice
- Input: nonperturbative n-point functions (fixed gauge)
- **Problem**: truncation of infinite system of equations / of effective action (control of systematic error difficult without external input )



2 / 29

#### Hadron properties encoded in QCD's n-point functions

 $\begin{array}{c} x_3 \\ x_2 \\ x_1 \\ x_1 \end{array} \begin{array}{c} y_3 \\ y_2 \\ y_1 \\ y_1 \end{array}$ 

[follow review Eichmann et al., Prog.Part.Nucl.Phys 91 (2016) 1]

- information contained in many *n*-point functions, varying effort to get them
- bound states / resonances = color singlets, poles in *n*-point functions
- Example: quark-antiquark 6-point function

 $G^{\alpha\beta\gamma}_{\delta\eta\rho}(x_1, x_2, x_3 | y_1, y_2, y_3) := \left< 0 | T\psi_{\alpha}(x_1)\psi_{\beta}(x_2)\psi_{\gamma}(x_3) \ \bar{\psi}_{\delta}(y_1)\bar{\psi}_{\eta}(y_2)\bar{\psi}_{\rho}(y_3) | 0 \right>$ 

spectral decomposition in momentum space

$$G_{\delta\eta\rho}^{\alpha\beta\gamma}(p_f,q_f,P|p_i,q_i,P) \simeq \sum_{n} \frac{\Psi_{\alpha\beta\gamma}^{(n)}(p_f,q_f,P)\bar{\Psi}_{\delta\eta\rho}^{(n)}(p_i,q_i,P)}{P^2+m_n^2} + \dots$$

- p, q...relative momenta, P ...total momentum
- G and  $\Psi^{(n)}$  may be gauge-dependent, but **poles**  $P^2 = -m_n^2$  gauge-**independent**
- Pole residue = Bethe-Salpeter wave function  $\Psi^{(n)}$ (coordinate space)

$$\Psi_{\alpha\beta\gamma}^{(n)}(x_1,x_2,x_3,P) = \left< 0 | T\psi_{\alpha}(x_1)\psi_{\beta}(x_2)\psi_{\gamma}(x_3) | \mathbf{n} \right>$$

イロト イポト イヨト イヨト

## Spectroscopy with lattice QCD

• define gauge-invariant interpolating fields h(x) and  $\overline{h}(y)$  at

$$x_1 = x_2 = x_3 = x$$
 and  $y_1 = y_2 = y_3 = y$ 

extract poles from 2-point correlator

$$C(x - y) = \left\langle 0 | T \underbrace{\left[ \Gamma^{\alpha\beta\gamma} \psi_{\alpha} \psi_{\beta} \psi_{\gamma} \right](x)}_{h(x)} \underbrace{\left[ \overline{\Gamma}^{\delta\eta\rho} \overline{\psi}_{\delta} \overline{\psi}_{\eta} \overline{\psi}_{\rho} \right](y)}_{\overline{h}(y)} | 0 \right\rangle$$

Spectral decomposition

$$C(\vec{P},t) = \int \frac{d^{3}\vec{x}}{(2\pi)^{4}} e^{ix\vec{P}} C(\vec{x},t) \quad \xrightarrow{t \gg 0} \quad \frac{e^{-E_{0}|t|}}{2E_{0}} |r_{0}|^{2} u_{0}(\vec{P}) \bar{u}_{0}(\vec{P}) + \cdots$$

- time-like pole in momentum space = exponential Euclidean time decay
- baryon mass from exponential decay of  $C(\vec{P},t)$
- Pole residues are simple:

$$\Gamma^{\alpha\beta\gamma}\Psi^{(n)}_{\alpha\beta\gamma}(x,x,x,P) = \langle 0|h(x)|\mathbf{n}\rangle = \langle 0|h(0)|\mathbf{n}\rangle \, e^{-ixP} = r_n \, u_n(\vec{P}) \, e^{-ixP}$$

- 4 回 5 - 4 三 5 - 4 三 5

#### Spectroscopy with lattice QCD (put into graphs)



Figure from [Eichmann et al. Prog.Part.Nucl.Phys. 91 (2016) 1, Fig.3.5]

#### Graphs

- Square = 6-point quark-antiquark function
- half circle = BS wave function (residue)

5 / 29

イロト イポト イラト イラト

**Functional approach** (solving a bound-state equation)

- could apply same approach as lattice QCD
- much simpler: solve self-consistent relation for hadron wave functions  $\Psi$  ( $\Psi$  = residue of pole of *n*-point function, full information about hadron on its pole)
- resulting equations known as hadron bound-state equations Bethe-Salpether / Faddeev equations (for mesons / baryons)

**Meson** (4-point function = two-particle bound state)

• Dyson equation:  $G = G_0 + KG$ (compact notation, Eichmann et al. Prog.Part.Nucl.Phys. 91 (2016) 1, Fig.3.7])  $\Psi$  satisfies BS equation



G<sub>0</sub>... nonperturbative quark and antiquark propagators (no interaction)
K... 4-quark scattering kernel (interaction)

イロト 不得た 不当た 不当たい

# Bethe-Salpether equation for meson amplitude

#### Meson-BS amplitude

• amputated wave function fulfills  $\Gamma = KG_0\Gamma$ , i.e.,

$$\Gamma_{\alpha\beta}(p,P) = \int \frac{d^4q}{(2\pi)^4} \left[ \kappa_{\alpha\gamma,\delta\beta}(p,P;q) \left\{ S(q_+) \right] \Gamma(q,P) S(-q_-) \right\}_{\gamma\delta}$$

- $\Gamma = 4 \times 4$  Dirac matric, for mesons  $(J^{P})$  with J > 0:  $\Gamma \to \Gamma^{\mu_{1}...\mu_{n}}$
- S = nonperturbative quark propagators

Can solve it at least in some truncation (e.g., rainbow-ladder)

- Eigenvalue problem:  $\Gamma = \lambda(P^2) KG_0 \Gamma$
- For all  $P_n^2$  with  $\lambda(P_n^2) = 1$  read off mass:  $m_n^2 = -P_n^2$  ( $m_1 \dots$  ground state)
- Properties of hadron  $(P^2=-m^2)$  from eigenvector  $\Gamma$  with suitable base  $au^{(i)}$

$$\Gamma_{\alpha\beta}(\boldsymbol{p},\boldsymbol{P}) = \sum_{i} f_i(\boldsymbol{p}^2,\boldsymbol{p}\cdot\boldsymbol{P};-\boldsymbol{m}^2) \tau_{\alpha\beta}^{(i)}(\boldsymbol{p},\boldsymbol{P})$$

• BSE = infinite system of coupled integral equations for FF  $f_i(p^2, p \cdot P; -m^2)$ 

## Bethe-Salpether equation for meson amplitude

#### Meson-BS amplitude

$$\Gamma_{\pi}(p,P) = \int_{q}^{\Lambda} \mathcal{K}_{\alpha\gamma,\delta\beta}(p,q,P) \left\{ S(q_{+}) \ \Gamma_{\pi}(q,P) \ S(-q_{-}) \right\}_{\gamma\delta}$$



## Bethe-Salpether equation for meson amplitude

in Rainbow-Ladder truncation

#### Meson-BS amplitude

$$\Gamma_{\pi}(p,P) = \int_{q}^{\Lambda} \mathcal{K}_{\alpha\gamma,\delta\beta}(p,q,P) \left\{ S(q_{+}) \ \Gamma_{\pi}(q,P) \ S(-q_{-}) \right\}_{\gamma\delta}$$



 $\stackrel{\text{log}}{=} \qquad \simeq \gamma_{\mu} T^{a} \cdot \Gamma(k^{2})$ 

Gluon propagator (effective propagator)

$$D_{\mu\nu}(k) = \left(\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right) \frac{Z(k^2)}{k^2}$$

E 5 4 E 5

# Hadron properties from bound-state amplitude

#### Bound-state amplitude gives access to ....

- o form factors: electromagnetic, transition
- PDAs. PDFs. GPDs. . . .

Ex 1: pion DA [e.g. Chang et al., PRL110(2013)092001] (projection onto light front)

$$\phi_{\pi}(\mathbf{x}) = \frac{1}{F_{\pi}} \operatorname{Tr} Z_2 \int_{q} \delta_{\zeta}^{\mathbf{x}}(q_+) \gamma \cdot \zeta \gamma_5 \Gamma_{\pi}(\mathbf{k}, \mathbf{P})$$

- DSE/BSE calculation via  $\sim$  50 Mellin moments
- Lattice calculation, either via moments ( $\sim$  2) or directly (e.g., LaMET, RQCD)

**Ex 2:** pion form factor  $F_{\pi}(Q^2)$ [Maris/Tandy (2000)]  $(q_{\pm} = q \pm Q/2, k_{\pm} = q \pm Q/4)$ (impulse approximation)  $P_{\mu}F_{\pi}(Q^{2}) = -\int_{\sigma} \operatorname{Tr}\left[\Gamma_{\pi}(k_{+}, -P_{+}) S(q) \ i \ \underbrace{\Gamma_{\mu}(q_{+}; Q)} S(q + Q) \Gamma_{\pi}(k_{-}, -P_{-})\right]$ guark-photon vertex





## Lattice-assisted bound-state equations

#### Lattice can help to control systematic error of truncation

- Lattice QCD + gauge-fixing: access to *n*-point functions
- Helped to settle momentum dependence of 2-point functions Landau gauge

$$D_{\mu\nu}(p) = \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right) \frac{Z(p^2)}{p^2}, \qquad G(p) = \frac{J(p^2)}{p^2}, \qquad S(p) = \frac{Z(p^2)}{i\not p + M(p^2)}$$

#### Lattice results are untruncated



- 不同 ト イモト イモト

## Lattice-assisted bound-state equations

#### Lattice can help to control systematic error of truncation

- Lattice QCD + gauge-fixing: access to *n*-point functions
- Helped to settle momentum dependence of 2-point functions Landau gauge

$$D_{\mu\nu}(p) = \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right) \frac{Z(p^2)}{p^2}, \qquad G(p) = \frac{J(p^2)}{p^2}, \qquad S(p) = \frac{Z(p^2)}{i\not p + M(p^2)}$$

#### Lattice results are untruncated

- but discretization and volumes effects should not be ignored
- H(4) symmetry causes deviations at large p<sup>2</sup>: F(p<sup>2</sup>) → F(p)
- Wilson term changes momentum behavior  $\propto O(a^2p^2)$
- Challenge: continuum- and infinite-volume extrapolated results
- very large & fine lattices are required

Good news: Lattice methods currently keep up with required precision

- 김 씨 김 씨 김 씨 김 씨 - 프

# Projects on 3-point functions in Landau gauge

Most important: Lattice-QCD input for 3-point functions:



BS wave functions

(work in progress)

$$\Gamma_{\pi}(p,P) = \int_{q}^{\Lambda} \mathcal{K}_{\alpha\gamma,\delta\beta}(p,q,P) \{ S(q_{+}) \Gamma_{\pi}(q,P) S(-q_{-}) \}_{\gamma\delta}$$

## • Tensor structure of quark bilinears

$$G(x,y) = \langle \psi(x)\bar{\psi}(z) \wedge \psi(z)\bar{\psi}(y) \rangle$$
 where  $\wedge = \gamma_{\mu}, \ \gamma_{5}\gamma_{\mu}, \ \sigma_{\mu\nu}, \dots$ 

- ► Full tensor structure of underlying vertex, Example: Quark-photon vertex
- Reuse/new data from/for RI'(S)MOM renormalization program

イロト イポト イラト イラト

# Hadron properties from bound-state amplitude

**Ex 2: pion form factor**  $F_{\pi}(Q^2)$ 

(impulse approximation)



## Ex 3: Meson transition form factor $\pi^0 \rightarrow \gamma^* \gamma^*$

(Weil et al. (2017), impulse approximation)



#### Ex 4: Nucleon electromagnetic current

(Eichmann, PRD84 (2011) 014014)



#### Require

- nonperturbative quark propagators
- BS amplitudes Γ
- Quark-photon vertex

s (quarks DSE | lattice data  $\rightarrow$  this talk) (truncated BSE | lattice: work in progress) (quark-photon BSE | first lattice data  $\rightarrow$  this talk)

< ロト < 同ト < ヨト < ヨト

# Quark-Photon ( $\gamma_{\mu}$ ) vertex as solution of BS equation

#### QCD dressing of tensor structure

• key to any BS/DSE calculation of electromagnetic properties of hadrons (elastic and transition form factors, HVP, ...)

$$\Gamma_{\mu}(k,Q) = \underbrace{i\gamma_{\mu}\lambda_{1} + 2k^{\mu}[i\not k\,\lambda_{2} + \lambda_{3}]}_{\Gamma_{\mu}^{\mathsf{BC}}} + \sum_{j=1}^{8} if_{j}T_{\mu}^{(j)}(k,Q)$$

•  $\Gamma_{\mu}$  satisfies inhomogeneous BS equation and  $\Gamma_{\mu}^{BC}$  vector WT identity

$$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

• In practice: "rainbow-ladder" truncated quark DSE and kernel .... systematic error?

$$K_{
ho\sigma,lphaeta}(k) = G(k^2) T^k_{\mu
u} \gamma^{lpha
ho}_{\mu} \gamma^{\sigmaeta}_{
u} \qquad T^k_{\mu
u} G(k^2) \dots \text{eff. gluon propagator}$$

イロト イポト イヨト イヨト

# Quark-Photon ( $\gamma_{\mu}$ ) vertex as solution of BS equation

#### QCD dressing of tensor structure

• key to any BS/DSE calculation of electromagnetic properties of hadrons (elastic and transition form factors, HVP, ...)

$$\Gamma_{\mu}(k,Q) = \underbrace{i\gamma_{\mu}\lambda_{1} + 2k^{\mu}[i\not k\lambda_{2} + \lambda_{3}]}_{\Gamma_{\mu}^{\mathsf{BC}}} + \sum_{j=1}^{8} if_{j}T_{\mu}^{(j)}(k,Q) = \underbrace{S^{-1}G_{\mu}(k,Q)S^{-1}}_{\text{lattice}}$$

•  $\Gamma_{\mu}$  satisfies inhomogeneous BS equation and  $\Gamma_{\mu}^{BC}$  vector WT identity

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

• In practice: "rainbow-ladder" truncated quark DSE and kernel .... systematic error?

$$K_{
ho\sigma,lphaeta}(k) = G(k^2) T^k_{\mu
u} \gamma^{lpha
ho}_{\mu} \gamma^{\sigmaeta}_{
u} \qquad T^k_{\mu
u} G(k^2) \dots \text{eff. gluon propagator}$$

イロト イポト イヨト イヨト

## Quark-Photon ( $\gamma_{\mu}$ ) vertex from lattice QCD

**Monte Carlo averages:** quark- $\gamma_{\mu}$  bilinear and propagator in Landau gauge (Inverse of  $D_{U}$  via momentum sources, numerically demanding)

(1) 
$$G_{\mu}(k, Q) = \sum_{x,y,z} e^{ik_{+}(x-z)} e^{ik_{-}(z-y)} \left\langle [D_{U}^{-1}]_{xz} \gamma_{\mu} [D_{U}^{-1}]_{zx} \right\rangle_{U}$$
  
(2) 
$$S(k_{\pm}) = \sum_{x,y} e^{ik_{\pm}(x-y)} \left\langle [D_{U}^{-1}]_{xy} \right\rangle_{U} \quad \text{with} \quad k_{\pm} = k \pm \frac{Q}{2}$$

Vertex from amputated 3-point function

$$\Gamma_{\mu}(k,Q) = S^{-1}\left(k - \frac{Q}{2}\right) G_{\mu}(k,Q) S^{-1}\left(k + \frac{Q}{2}\right)$$

Form factors from solving

$$\Gamma_{\mu}(k,Q) = i\gamma_{\mu}\lambda_1 + 2k^{\mu}[ik\lambda_2 + \lambda_3] + \sum_{j=1}^{8} if_j T^{(j)}_{\mu}(k,Q)$$

イロト 不得下 イヨト イヨト 二日

# Parameters of our gauge field ensembles $(N_f = 2)$

## Lattice action

| • Wilson gauge action                                                       | $\beta$      | $\kappa$           | $L_s^3 \times L_t$                                              | <i>a</i> [fm] | $m_b$ [MeV] | $m_\pi$ [MeV] |
|-----------------------------------------------------------------------------|--------------|--------------------|-----------------------------------------------------------------|---------------|-------------|---------------|
| <ul> <li>Wilson clover fermions</li> <li>Landau gauge</li> </ul>            | 5.20<br>5.20 | 0.13584<br>0.13596 | $\begin{array}{c} 32^3 \times 64 \\ 32^3 \times 64 \end{array}$ | 0.08<br>0.08  | 14<br>6     | 411<br>280    |
| (after thermalization)                                                      | 5.29<br>5.29 | 0.13620<br>0.13632 | $\begin{array}{c} 32^3 \times 64 \\ 32^3 \times 64 \end{array}$ | 0.07<br>0.07  | 17<br>8     | 422<br>295    |
| Can study:                                                                  | 5.29<br>5.29 | 0.13632<br>0.13640 | $\begin{array}{c} 64^3 \times 64 \\ 64^3 \times 64 \end{array}$ | 0.07<br>0.07  | 8<br>2      | 290<br>150    |
| <ul> <li>quark mass dependence</li> <li>discret./ volume effects</li> </ul> | 5.40<br>5.40 | 0.13647<br>0.13660 | $\begin{array}{c} 32^3 \times 64 \\ 48^3 \times 64 \end{array}$ | 0.06<br>0.06  | 18<br>7     | 426<br>260    |

## Consider:

- local vector current:  $\bar{\psi}_x \gamma_\mu \psi_x$
- twisted boundary condition for quarks

#### Acknowledgements

- $N_f = 2$  configurations provided by RQCD collaboration (Regensburg)
- ${f \bullet}\,$  Gauge-fixing and calculation of propagators at the HLRN, LRZ and FSU Jena

- 不同 ト イモト イモト

## Quark-Photon vertex: discrete lattice momenta

#### **Momenta** quarks: $k_{\pm} = k \pm Q/2$

• twisted b.c. for quarks:  $\psi(x + \hat{\mu}L_{\mu}) = e^{i\theta_{\mu}}\psi(x)$ 

$$ak_{\mu} = \frac{2\pi n_{\mu}}{L_{\mu}} + \frac{\theta_{\mu}}{L_{\mu}} \equiv \frac{2\pi}{L_{\mu}} \left( n_{\mu} + \frac{\tau_{\mu}}{2} \right) \qquad \text{twist angle:} \quad \theta_{\mu} = \pi \tau_{\mu} / L_{\mu}$$

• symmetric setup (preferred but no access to  $\lambda_2, \lambda_3, f_5, f_7$ )

$$Q^{2} = k_{-}^{2} = k_{+}^{2}, \qquad n^{-} = n(1, 1, 0, 0) + (\tau, \tau, 0, 0), \qquad z \equiv \frac{k \cdot Q}{|k| |Q|}$$
$$z = 0 \qquad n^{+} = n(0, 1, 1, 0) + (0, \tau, \tau, 0)$$

• asymmetric setup

$$Q^{2} = k_{-}^{2} > k_{+}^{2}, \qquad n^{-} = n (2, 1, 0, 0) + (2\tau, \tau, 0, 0)$$
$$z = \frac{1}{\sqrt{5}} \qquad n^{+} = n (0, 1, 1, 0) + (0, \tau, \tau, 0)$$

• discrete values:  $n = 1, 2, ..., L_s/4$  and twists  $\tau = 0, 0.4, 0.8, 1.2$  and 1.6 (gives smooth interpolation)

(日) (同) (三) (三)



10

# $\Gamma_{\mu} = i\gamma_{\mu}\lambda_{1} + 2k^{\mu}[i\not k \lambda_{2} + \lambda_{3}] + \sum_{j=1}^{8} if_{j}T_{\mu}^{(j)}(k,Q)$

## Lattice results

(preliminary) vs. continuum (rainbow-ladder)



(Rainbow-ladder results is from G. Eichmann)

イロト 不得下 イヨト イヨト

## Lattice results

$$\Gamma_{\mu} = i\gamma_{\mu}\lambda_1 + 2k^{\mu}[i\not k \lambda_2 + \lambda_3] + \sum_{j=1}^{8} if_j T_{\mu}^{(j)}(k,Q)$$

(preliminary) vs. continuum (rainbow-ladder)



(Rainbow-ladder results is from G. Eichmann)

イロト イヨト イヨト イヨト

18 / 29

## Lattice results

$$\Gamma_{\mu} = i\gamma_{\mu}\lambda_1 + 2k^{\mu}[i\not k \lambda_2 + \lambda_3] + \sum_{j=1}^{8} if_j T_{\mu}^{(j)}(k,Q)$$

(preliminary) vs. continuum (rainbow-ladder)



(Rainbow-ladder results is from G. Eichmann)

イロト イヨト イヨト イヨト

## Improvement of lattice discretization

Lattice results for form factors

- volume, discretization effects smaller than deviations to RL-results
- $k \cdot Q$  dependence small
- lattice results sufficient for currently required precision
- good hint for improved truncations



## Hadron vacuum polarization

#### Quark-Photon-Vertex

• contains information about QCD contributions to  $a_{\mu} = \frac{1}{2}(g_{\mu} - 2)$  (LbL and HVP)

$$a_{\mu}^{HVP} = rac{lpha}{\pi} \int_{0}^{1} dx (1-x) \left[ -e^{2} \Pi_{R} \left( rac{x^{2} m_{\mu}^{2}}{1-x} 
ight) 
ight]$$



HVP: Fourier transform of hadronic part of vector-vector current correlator

$$\Pi^{\mu\nu}(Q) = \int d^4 x \, e^{iQ \cdot x} \, \langle 0 | \, \mathsf{T} j^{\mu}(x) j^{\nu}(0) \, | 0 \rangle = \left( Q^2 \delta_{\mu\nu} + Q_{\mu} Q_{\nu} \right) \Pi(Q^2)$$
$$= \operatorname{Tr} \int \frac{d^4 k}{(2\pi)^4} \, Z_2 \, i \gamma^{\mu} \, \mathcal{S}(k_+) \, \Gamma^{\nu}(k, Q) \, \mathcal{S}(k_-)$$

**Requires** nonperturbative

- quark propagator
- Quark-photon vertex

(quarks DSE | lattice data)

(quark-photon BSE | first lattice data)

# Improvement of lattice discretization

## Lattice results for form factors

- volume, discretization effects smaller than deviations to RL-results
- $k \cdot Q$  dependence small
- lattice results sufficient for currently required precision
- good hint for improved truncations



## Lattice artefacts

- lattice QCD can provide untruncated result as input
- but discretization and volumes effects cannot be ignored
- H(4) symmetry causes deviations at large  $k^2$ ,  $Q^2$ :  $f(k^2,Q^2) o f(k,Q)$
- Wilson term changes momentum behavior  $\propto {\cal O}(a^2p^2)$
- lattice offshell-improvement to better reach continuum-extrapolated results

## Vector WT identity and the lattice

Continuum: vector Ward-Takahashi identity (vWTI)

$$Q_{\mu}G_{\mu}(k,Q) = S(k_{-}) - S(k_{+})$$
 with  $G_{\mu} = S(k_{-})\Gamma_{\mu}(k,Q)S(k_{+})$ 

Lattice: vWTI for Wilson fermions and naive current

$$(k_{\pm} = k \pm Q/2)$$

• 3-point fcts.:

$$G_{\mu}(k,Q) = \sum_{x,y,z} e^{ik_{-}(x-z)} e^{-ik_{+}(y-z)} \langle \psi_{x} V_{\mu}(z) \overline{\psi}_{y} \rangle$$
$$= Z_{V}(g^{2}) \underbrace{\sum_{x,y,z} e^{ik_{-}(x-z)} e^{-ik_{+}(y-z)} \langle \psi_{x} \widetilde{V}_{\mu}(z) \overline{\psi}_{y} \rangle}_{x,y,z} + O(a)$$

point-split vector current satisfies WTI

[Karsten/Smit (1981)]

$$V_{\mu}^{f}(z) = \frac{1}{2} \left( \bar{\psi}_{z} [\gamma_{\mu} - 1] U_{x\mu} \frac{\lambda^{f}}{2} \psi_{z+a\hat{\mu}} + \bar{\psi}_{z+a\hat{\mu}} [\gamma_{\mu} + 1] U_{x\mu}^{\dagger} \frac{\lambda^{f}}{2} \psi_{z} \right)$$
$$= \bar{\psi}_{z} \gamma_{\mu} \frac{\lambda^{f}}{2} \psi_{z} + a K_{\mu}(z) \equiv Z_{V}(g_{0}^{2}) \tilde{V}_{\mu}^{f}(z) + O(a)$$

(日) (同) (三) (三)

## Vector WT identity and the lattice

Continuum: vector Ward-Takahashi identity (vWTI)

$$Q_{\mu}G_{\mu}(k,Q) = S(k_{-}) - S(k_{+})$$
 with  $G_{\mu} = S(k_{-})\Gamma_{\mu}(k,Q)S(k_{+})$ 

Lattice: vWTI for Wilson fermions and naive current

$$Z_V(g_0^2) \cdot Q_\mu \tilde{G}_\mu(k, Q) = S(k_-) - S(k_+) + O(a; k, Q)$$

**Test:** calculate  $\lambda_1(k, Q)$  twice

from vertex data

$$\Gamma_{\mu} = S^{-1}(k_{-}) \, \tilde{G}_{\mu}(k, Q) \, S^{-1}(k_{+}) = i \gamma_{\mu} \lambda_{1} + 2k^{\mu} [i \not k \, \lambda_{2} + \lambda_{3}] + \sum_{j=1}^{s} i f_{j} \, T_{\mu}^{(j)}(k, Q)$$

2) from data for quark propagator S

$$\lambda_1^{S} = \frac{A(k_+^{S}) + A(k_-^{Z})}{2}$$
 where  $S^{-1}(p) = i\gamma_{\mu} \sin ap_{\mu} A(p) + B(p)$ 

~

- 4 同 6 4 日 6 4 日 6

# Vector WT identity and the lattice: $\lambda_1$ vs. $\lambda_1^S$



• deviations grow with 
$$k^2 + Q^2/4$$

- discret. effects larger for  $\lambda_1^S$
- surprised about deviations at small  $k_{\pm}^2$
- Which is correct  $\lambda_1$  or  $\lambda_1^S$ ?
- **Test:** calculate  $\lambda_1(k, Q)$  twice
  - I from vertex data



0

$$\Gamma_{\mu} = S^{-1}(k_{-}) \, \tilde{G}_{\mu}(k, Q) \, S^{-1}(k_{+}) = i \gamma_{\mu} \lambda_{1} + 2k^{\mu} [i \not k \, \lambda_{2} + \lambda_{3}] + \sum_{j=1}^{\circ} i f_{j} \, T_{\mu}^{(j)}(k, Q)$$

2) from data for quark propagator S

$$\lambda_1^{S} = rac{A(k_+^2) + A(k_-^2)}{2}$$
 where  $S^{-1}(p) = i\gamma_{\mu} \sin ap_{\mu} A(p) + B(p)$ 

# Vector WT identity and the lattice: $\lambda_1$ vs. $\lambda_1^S$



$$\lambda_1^{S} = \frac{A(k_+^2) + A(k_-^2)}{2}$$
 where  $S^{-1}(p) = i\gamma_{\mu} \sin ap_{\mu} A(p) + B(p)$ 

# Vector WT identity and the lattice: $\lambda_1$ vs. $\lambda_1^S$

## Find

- deviations grow with  $k^2 + Q^2/4$  and m
- discret. effects larger for  $\lambda_1^S$
- surprised about deviations at small  $k_{\pm}^2$
- Which is correct  $\lambda_1$  or  $\lambda_1^S$ ? cancelation effects improve  $\lambda_1$

## First data for O(a)-improved propagator

[Oliveira, Silva, Skullerud, A.S., arXiv:1809.02541]



$$\mathcal{S}_{ ext{rot}}(k) = (1+2b_q ext{am}) \cdot \sum_{x,y} e^{-ik(x-y)} \left\langle L_x(U) \, \mathcal{M}_{xy}^{-1}(U) \, \mathcal{R}_y(U) 
ight
angle_U$$

Improves WTI!

- *M* is Wilson clover-fermion matrix
- left/right rotation:  $L_x(U) \equiv [1 c_q a \overrightarrow{D}_x(U)], \quad R_y(U) \equiv [1 + c_q a \overleftarrow{D}_y(U)]$
- has smaller  $O(a^2)$  effects than other definitions, see e.g. QCDSF (2001)

# Summary and Outlook

## First lattice data for Quark-Photon vertex (ever)

- Volume, discretization effects smaller than deviations to continuum
- give good hints for improving currently used truncations

Future: high precision

- lattice implementation should be O(a)-improved (off-shell)
- work out lattice corrections (nothing available), improve statistics at low momentum

Other vertices: full tensor structure also needed

- $G(x,y) = \langle \psi(x)\bar{\psi}(z) \wedge \psi(z)\bar{\psi}(y) \rangle$  where  $\Lambda = \gamma_{\mu}, \ \gamma_{5}\gamma_{\mu}, \ \sigma_{\mu\nu}, \dots$ 
  - σ<sub>μν</sub> vertex for proton tensor charges see, e.g., [recent paper Wang et al. (2018)]
  - Axialvector vertex (γ<sub>5</sub>γ<sub>μ</sub>) required for axial form factors see, e.g., [Eichmann & Fischer, EPJA48 (2012) 9]
  - Pseudoscalar vertex ... all the usual lattice hadron physics quantities.
- Data taken, work in progress

## Hadron properties from bound-state amplitude

#### Bound-state amplitude gives access to ...

- form factors: electromagnetic, transition
- PDAs, PDFs, GPDs, ...

**Ex 1: pion DA** [e.g. Chang et al., PRL110(2013)092001] (projection onto light front)

$$\phi_{\pi}(\mathbf{x}) = \frac{1}{F_{\pi}} \operatorname{Tr} Z_2 \int_{q} \delta_{\zeta}^{\mathbf{x}}(q_+) \gamma \cdot \zeta \gamma_5 \Gamma_{\pi}(\mathbf{k}, \mathbf{P})$$

- $\bullet$  DSE/BSE calculation via  $\sim 50$  Mellin moments
- Lattice calculation, either via moments ( $\sim$  2) or directly (e.g., LaMET, RQCD)

Ex 2: pion form factor  $F_{\pi}(Q^2)$  [Maris/Tandy (2000)] (impulse approximation)  $(q_{\pm} = q \pm Q/2, k_{\pm} = q \pm Q/4)$  $P_{\mu}F_{\pi}(Q^2) = -\int_{q} \operatorname{Tr} \left[ \Gamma_{\pi}(k_{+}, -P_{+}) S(q) \ i \prod_{\substack{q \neq k = p \text{ foton vertex}}} S(q + Q) \Gamma_{\pi}(k_{-}, -P_{-}) \right]$ 

イロト 不得下 イヨト イヨト



Summary and Outlook: Hadronic wave functions on the lattice

#### Meson-BS amplitude

$$\Gamma_{\pi}(p,P) = \int_{q}^{\Lambda} \mathcal{K}_{\alpha\gamma,\delta\beta}(p,q,P) \left\{ S(q_{+}) \; \Gamma_{\pi}(q,P) \; S(-q_{-}) \right\}_{\gamma\delta}$$

#### Meson-BS wave function

momentum space

$$\phi_{\pi}(p,P) = S^{-1}(q_{+}) \Gamma_{\pi}(p,P) S^{-1}(q_{-})$$

coordinate space

$$\phi_{\pi}(x_1 - x_2, P) = \langle 0 | T[\psi_1(x_1) \, \bar{\psi}_2(x_2)] \, | \pi(P) \rangle$$

- caveat: restriction to (almost) equal time
- similar as RQCD's quantity for calculation of PDAs

Aim: map out (part of) tensor structure e.g., for pion of isospin k

$$\phi_{\pi_k}(\mathbf{r}, \mathbf{P}) = \frac{\sigma_k}{2} \gamma_5 \left[ -if_1 + i\gamma_\mu P_\mu f_2 + \gamma_\mu x_\mu f_3 + \sigma^{\mu\nu} P_\mu x_\nu f_4 \right],$$

• FF  $f_j$  = functions of Lorentz-invariants:  $x \cdot P = \vec{r} \cdot \vec{P}, \ x^2 = r^2, \ P^2 = m_\pi^2$ 



Thank you for your attention!

イロト イヨト イヨト イヨト

2