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It is argued that the gauge invariance of a vector field does not necessarily imply zero mass for an associ-
ated particle if the current vector coupling is sufficiently strong. This situation may permit a deeper under-
standing of nucleonic charge conservation as a manifestation of a gauge invariance, ~vithout the obvious
confIict ~ith experience that a massless particle entails.

&~OES the requirement of gauge invariance for a.
vector Geld coupled to a dynamical current imply

the existence of a corresponding particle with zero
mass? Although the answer to this question is invari-
ably given in the affirmative, ' the author has become
convinced that there is no such necessary implication,
once the assumption of weak coupling is removed. Thus
the path to an understanding of nucleonic (baryonic)
charge conservation as an aspect of a gauge invariance,
in strict analogy with electric charge, ' may be open for
the Grst time.
One potential source of error should be recognized at

the outset. A gauge-invariant system is not the con-
tinuous limit of one that fails to admit such an arbitrary
function transformation group. The discontinuous
change of invariance properties produces a correspond-
ing discontinuity of the dynamical degrees of freedom
and of the operator commutation relations. No reliable
conclusions about the mass spectrum of a gauge-
invariant system can be drawn from the properties of
an apparently neighboring system, with a smaller in-
variance group. Indeed, if one considers a vector Geld
coupled to a divergenceless current, where gauge
invariance is destroyed by a so-called mass term with
parameter mt, it is easily shown' that the mass spectrum
must extend below mp. The lowest mass value will
therefore become arbitrarily small as mo approaches
zero. Nevertheless, if m, o is exactly zero the commutation
relations, or equivalent properties, upon which this
conclusion is based become entirely different and the
argument fails.
If invariance under arbitrary gauge transformations

is asserted, one should distinguish sharply between
numerical gauge .functions and operator gauge func-
tions, for the various operator gauges are not on the
same quantum footing. In each coordinate frame there
is a unique operator gauge, characterized by three-
dimensional transversality (radiation gauge), for which
one has the standard operator construction in a vector
space of positive norm, with a physical probability
interpretation. When the theory is formulated with the
aid of vacuum expectation values of time-ordered
operator products, the Green's functions, the freedom
of formal gauge transformation can be restored. ' The
' For example, J. Schwinger, Phys. Rev. 75, 651 (1949).' T. D. Lee and C. N. Yang, Phys. Rev. 98, 1501 (1955).' K. Johnson, Nuclear Phys. 25, 435 (1961).' J. Schwinger, Phys. Rev. 115, '121 (1959).

A„P(P)=B(m') g„.—(P.
~.+P.~,) (~P)+P.P

P'+(&P)'

Here B(m') is a real non-negative number. It obeys the
sum rule

1= dm' B(m')

which is a full expression of all the fundamental equal-
time commutation relations.
The Geld equations supply the analogous construction

for the vacuum expectation value of current products
(j„(x)j„(x')), in terms of the non-negative matrix

j"(P)=m'B( ')(P»P g"P'). —
The factor m' has the derisive consequence that m=0
is not contained in the current vector's spectrum of
vacuum fluctuations. The latter determines B(m') for
ns&0, but leaves unspeciGed a possible delta function
contribution at m=0,

B(m') =Bob(m')+Bi(m')
The non-negative constant 80 is then Gxed by the sum
rule,

1=Be+ dms Bi(m').
0

Green's functions of other gauges have more compli-
cated operator realizations, however, and will generally
lack the positiveness properties of the radiation gauge.
Let us consider the simplest Green's function associ-

ated with the field A „(x),which can be derived from the
unordered product

(A„(x)A„(x'))

(dP) .a'vt* "&dm-s st+(p)b(p'+m')A„, (p),
(2or)s

where the factor +st(p)8(p'+ m) enforces the spectral
restriction to states with mass m& 0 and positive energy.
The requirement of non-negativeness for the matrix
A„„(p) is satisfied by the structure associated with the
radiation gauge, in virtue of the gauge-dependent asym-
metry between space and time (the time axis is specified
by the unit vector rt„):
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We study the formation of a mass gap, or effective gluon mass (and consequent dimen-
sionful parameters such as the string tension, glueball mass, (Trg„„2), correlation
lengths) in continuum QCD, using a special set of Schwinger-Dyson equations. These
equations are derived from a resummation of the Feynman graphs which represent cer-
tain gauge-invariant color-singlet Green s functions, and are themselves essentially gauge
invariant. This resummation is essential to the multiplicative renormalizability of QCD
in the light-cone gauge, which we adopt for technical reasons. We close the dynamical
equations by "solving" a Ward identity, a procedure which, while exact in the infrared re-
gime, is subject to ambiguities and corrections in the ultraviolet regime which are beyond
the scope of the present work. (These ambiguities are less prominent for QCD in three
dimensions, which we discuss also. ) As discussed in an earlier work, quark confinement
arises from a vortex condensate supported by the mass gap. Numerical calculations of
the mass gap are presented, suggesting an effective gluon mass of 500+200 MeV and a
0+ glueball mass of about twice this value.

I. INTRGDUCTION

The extraction of dimensionful quantities (e.g.,
the string tension) in continuum QCD is a truly
quantum-mechanical problem since the classical
Lagrangian has no fixed scale of mass. The
pioneering instanton/meron work of Callan,
Dashen, and Gross' emphasized classical solutions
which themselves have no fixed mass scale, and
then attempted to introduce the renormalization-
group mass through one-loop quantum corrections.
However, even this difficult calculation failed to
provide a definitive cutoff mechanism for infrared
singularities, and it appears that the proposed
phase transition to a baglike state takes one un-
comfortably close to the momentum scale at which
the square of the one-loop running charge

g (k)=[bin( —k /A )]
turns negative and unphysical. [Here

11'b=
48m

is the lowest-order coefficient in the P function
P= bg + . . ;C~—is the Casimir eigenvalue of
the adjoint representation if no quarks are present,
as we shall assume, and C„=N for SU(N.]
Other authors have attempted to account for the

presence of fluctuating color-magnetic fields in the
QCD vacuum, beginning with the famous one-loop
correction to the QCD Lagrangian for constant

fields. But this has a minimum only for unphysi-
cal values of g; moreover, the minimum is un-
stable. Even in three-dimensional (d =3) QCD
(or equivalently, d =4 QCD at very high tempera-
tures) which has a dimensionful parameter in the
Lagrangian (g -mass) perturbation theory is only
useful at large momenta, just as for d =4, and the
problem of infrared singularities remains un-
resolved.
It may well happen that continued work on

merons, instantons, corrections to the Lagrangian,
etc., ultimately leads to a systematic and practical
picture of confinement in continuum QCD. But it
would clearly be valuable to have a picture which
allowed for a direct, intuitive grasp of the role of
the infrared cutoff and how it is used in calculat-
ing various dimensionful quantities. Moreover, it
must be shown that such a picture is systematically
derivable from first principles. We offer here the
first steps in such a derivation, which leads to the
conclusion that the gauge fields are effectively
described as massive. The gluon "mass" is not a
directly measurable quantity, but must be related
to other physical parameters by difficult calcula-
tions not yet done. Nevertheless the ideas behind
these calculations are easily grasped, and semi-
quantitative estimates of, e.g., the string tension
and glueball mass can be made.
We begin with a description of massive gluons at

the Lagrangian level, emphasizing that this can be
made locally gauge invariant. Although we speak
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notoriously complex task [7–11]. In fact, the purely non-
perturbative character of the problem is compounded by
the need to demonstrate, at every step, the compatibility
of any proposed mechanism with the crucial concepts of
gauge invariance and renormalizability.

The notion that gluons acquire a dynamical,
momentum-dependent mass due to their self-interactions
was originally put forth in the early 1980s [1, 12, 13], but
has only gained particular impetus relatively recently;
this is primarily the result of the continuous accumula-
tion of indisputable evidence from large-volume lattice
simulations, both for SU(3) [14–17] and SU(2) [18–21].
As shown in Fig. 1, according to these high-quality sim-
ulations, the Landau gauge gluon propagator saturates
at a nonvanishing value in the deep infrared range, a fea-
ture that corresponds to an unequivocal signal of gluon
mass generation [22] (for related but somewhat different
approaches to this issue, see Refs. [23–41]).

The primary theoretical concept underlying this en-
tire topic is none other than Schwinger’s fundamental
observation [42, 43]. That is, a gauge boson may acquire
mass even if the gauge symmetry forbids a mass term at
the level of the fundamental Lagrangian, provided that
its vacuum polarization function develops a pole at zero
momentum transfer. In this paper, which is based upon
a brief series of lectures [44], we outline the implementa-
tion of this fascinating concept in QCD, using the general
formalism of the Schwinger-Dyson equations (SDEs) [24,
45]. In particular, we focus on a variety of subtle concep-
tual issues, and explain how they can be self-consistently
addressed within a particularly suitable framework that
has been developed in recent years.

The present work is organized as follows. In Section 1,
we present the main characteristics and advantages of the
new SDE framework that emerges from the combination
of the pinch technique (PT) [1, 46–49] with the back-
ground field method (BFM) [50, 51], which is simply re-
ferred to as “PT-BFM” [52–54]. In Section 2, we conduct
a detailed study of the special identity that enforces the

masslessness of the gluon propagator when the Schwinger
mechanism is non-operational, and demonstrate conclu-
sively that the seagull graph is not responsible for the
mass generation, nor does it give rise to quadratic di-
vergences once such a mass has been generated [55]. In
Section 3, we explain how the massless poles required for
the implementation of the Schwinger mechanism enter
the treatment of the gluon SDE, and why their inclu-
sion is crucial for maintaining the Becchi–Rouet–Stora–
Tyutin (BRST) symmetry of the theory in the presence
of a dynamical gluon mass [56]. Then, in Section 4, we
derive the “gluon gap equation” [57], namely, the homo-
geneous integral equation that governs the dependence of
the gluon mass function on the momentum. In Section
5, we proceed to the numerical treatment of this equa-
tion, and discuss its compatibility with some basic field-
theoretic criteria. Finally, we present our conclusions in
Section 6.

2 General considerations

In this section, we present a general overview of the con-
ceptual and technical tools necessary for the analysis that
follows.

2.1 Preliminaries

The Lagrangian density of the SU(N) Yang–Mills theory
can be expressed as the sum of three terms:

L = LYM + LGF + LFPG. (2.1)

The first term represents the gauge covariant action,
which is usually expressed in terms of the field strength
of the gluon field A

LYM = −1
4
F a

µνFµν
a ;

F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µAc
ν , (2.2)

Fig. 1 The SU(3) (a) and SU(2) (b) gluon propagator ∆ measured on the lattice. Lattice data are from Refs. [14, 15]
[SU(3)] and Ref. [21] [SU(2)].
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m2(0), we find that the gluon masses before and after
renormalization are related by [80]

m2
R(q2) = ZAm2

0(q
2). (5.22)

Evidently, this particular “renormalization” is not asso-
ciated with a counter-term of the type δm2= m2

R −m2
0,

as is the case for hard boson masses (which is precisely
the essence of point (iii)).

(v) In order to fully determine the nonperturbative
∆(q2), one should, in principle, solve the coupled system
of Eq. (5.1). However, the derivation of the all-order inte-
gral equation for Jm(q2) is technically far more difficult,
primarily because of the presence of the fully dressed ver-
tex BQ3 [see (a5) in Fig. 6]. The latter is a practically
unexplored quantity with an enormous number of form
factors (for recent works on the subject see Refs. [81,
82]). Instead, we study Eq. (5.17) in isolation, treating
all full propagators appearing in this calculation as ex-
ternal quantities, the forms of which are determined by
resorting to information beyond the SDEs, such as the
large-volume lattice simulations. Therefore, Eq. (5.17) is
effectively converted into a homogeneous linear integral
equation for the unknown m2(q2).

We now turn to the numerical analysis of the gluon gap
equation. After its full renormalization has been care-
fully performed1) , Eq. (2.24) has been utilized, and the
substitution of ∆(k2) and F (q2) into Eq. (5.17) using
the lattice data of Refs. [14, 15] has been implemented,
one obtains positive-definite and monotonically decreas-
ing solutions, as shown in Fig. 10. This numerical solu-
tion can be accurately fit using the simple and physically
motivated function

m2(q2) =
m2

0(q2)
1 + (q2/M2)1+p

. (5.23)

Specifically, the numerical solution shown in Fig. 10 is
perfectly reproduced when the parameters (M, p) as-
sume the values (436 MeV, 0.15).

In addition, note that one can omit the 1 in the denom-
inator of Eq. (5.23) for asymptotically large momentum
values, yielding “power-law” behavior [83–85], where

m2(q2) ∼
q2≫M2

m2
0M2

q2
(q2/M2)−p. (5.24)

This particular behavior reveals that condensates of di-
mension two do not contribute to the operator product
expansion (OPE) of m2(q2), given that their presence
would have induced a logarithmic running of the so-
lutions. Indeed, in the absence of quarks, the lowest-
order condensates appearing in the OPE of the mass

Fig. 10 The numerical solution for m2 (q2 ) (black circles) com-
pared with the corresponding fit Eq. (5.23) (black, continuous).
The (blue) dashed curve represents the asymptotic fit given by Eq.
(5.24).

must be those of dimension four, namely, the (gauge-
invariant) ⟨0|:Ga

µνGµν
a :|0⟩, and possibly the ghost con-

densate ⟨0|:ca ! ca:|0⟩ [86–88]. As these condensates
must be divided by q2 on dimensional grounds, one ob-
tains (up to logarithms) the observed power-law behav-
ior.

We end this section by commenting that, as has been
argued recently [5], the nontrivial momentum depen-
dence of the gluon mass shown in Fig. 10 may be con-
sidered responsible for the fact that, in contradistinction
to a propagator with a constant mass, the ∆(q2) of Fig.
1 displays an inflection point. The presence of such a
feature, in turn, is a sufficient condition for the spectral
density of ∆(q2), ρ, to be non-positive definite.

Specifically, the Källén–Lehman representation of
∆(q2) reads

∆(q2) =
∫ ∞

0
dσ

ρ(σ)
q2+ σ

, (5.25)

and if ∆(q2) has an inflection point at q2
⋆ , then its second

derivative vanishes at that point (see Fig. 11), such that
[89]

∆′′(q2
⋆) = 2

∫ ∞

0
dσ

ρ(σ)
(q2

⋆ + σ)3
= 0. (5.26)

Given that q2
⋆ > 0, then the sign of ρ(σ) is forced to re-

verse at least once. This non-positivity of ρ(σ) may be
interpreted as an indication of confinement (see Ref. [5],
and references therein), because the resultant breeching
of the axiom of reflection positivity excludes the gluon
from the Hilbert space of observable states (for related
works, see Refs. [23, 25, 89–93]). As can be seen in Fig.
11, the first derivative of ∆(q2) exhibits a minimum at

1) This rather technical procedure, and the manner in which it affects the form of the renormalized kernel Kαβ , has been presented in
Ref. [80].
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Ø …...	
Ø Can	we	quantitatively	understand	quark	and	gluon	
confinement	in	quantum	chromodynamics	and	the	existence	of	
a	mass	gap?	

	
Quantum	chromodynamics,	or	QCD,	is	the	theory		
describing	the	strong	nuclear	force.	Carried	by		
gluons,	it	binds	quarks	into	particles	like	protons		
and	neutrons.	Apparently,	the	tiny	subparticles		
are	permanently	confined:	one	can’t	pull	a	quark		
or	a	gluon	from	a	proton	because	the	strong	force		
gets	stronger	with	distance	and	snaps	them	right		
back	inside.	
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Gluon mass scale 

mg	≈	0.5	GeV	:	A	dynamical	mass	scale	generation		

rC	≈	0.5	:	maxium	wavelength	

Quark	and	Hadron	

Observables???	
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Bound state and quantum field theory 

		

Field	theory	Successful:	
•  Nonrelativistic	quantum	

mechanics	to	handle	
bound	state;	

•  Perturbation	theory	to	
handle	relativistic	effects	

Field	theory	not	Successful	yet:	
•  Growth	of	the	running	coupling	constant	

in	the	infrared	region;	
•  Confinement;	
•  Dynamical	Chiral	Symmetry	Breaking;	
•  Possible	nontrivial	vacuum	structure	in	

hadron	

Trace	anomaly	
Ø  All	renormalisable	four-

dimensional	theories	
possess	a	trace	anomaly;	

Ø  The	size	of	the	trace	
anomaly	in	QED	must	be	
great	deal	smaller	than	
that	in	QCD.	
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Hadron	bound	state	problem 

Constituent	quark	
model->	intuitive	
understanding	of	
many	low	energy	
observables.	
	
Minimum	number	
of	constituents	
required	

Feynman’s	parton	
model->	intuitive	
understanding	of	high-
energy	phenomena.	
	
Constituent	picture;	
Probabilistic	
interpretation	of	
distribution	functions	

QCD	vacuum	in	the	hadron	is	very	complicated	medium	
Individual	quarks	and	gluons	are	lost	in	the	sea	

	
	

Both	the	constituent	quark	model	and	the	parton	model	
are	put	in	peril	by	QCD	with	a	possible	complicated	

vacuum	structure.	
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•  Pion	is	Massless...	

Why	Pion-----Messager	of	QCD 

• 	In	October	1934,	Hideki	Yukawa	predicated	the	existence	of	a	“heavy	quantum”	
meson,	exchanging	nuclear	force	between	neutrons	and	protons.		
• 	It	was	discovered	by	Cecil	Powel	in	1949	in	cosmic	ray	tracks	in	a	photographic	
emulsion.	
• 	Pion	was	nicely	accommodated	in	the	Eight	Fold	way	of	Murray	Gell-Mann	in	1961.	
• 	Yoichiro	Nambu	associated	it	with	CSB	in	1960. 
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Pion’s	dichotomy 
Goldstone	boson	and	Bound	State 
Maris,	Roberts	and	Tandy,	Phys. Lett. B420(1998)	267-273 

Ø  Pion’s	Bethe-Salpeter	amplitude	
	Solution	of	the	Bethe-Salpeter	equation	

	
	
	
Ø  Dressed-quark	propagator	

Ø  Axial-vector	Ward-Takahashi	identity	entails(chiral	limit)	

•  Given	the	dichotomy	of	pion	the	fine-tuning	should	not	play	any	role	in	an	explanation	of	pion	properties;	
•  Descriptions	of	pion	within	frameworks	that	cannot	faithfully	express	symmetries	and	their	breaking	

patterns(such	as	constituent-quark	models)	are	unreliable;	
•  Hence,	pion	properties	are	an	almost	direct	measure	of	the	dressed-quark	mass	function.			
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Dyson-Schwinger	Equation	scope	

Bethe-Salpeter	Equations	
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RGI	interaction	
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Quark	Propagator	
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Quark	Propagator	
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Pion	Bethe-Salpeter	Wave	Function 

•  Solving	BSEs	

•  Eigen	equation	

•  General	forms	of	wave	function	

•  Rest	frame	

•  Numerical	tricks:	
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•  Ultraviolet	Behaviors(up	to	logarithm)	

•  Infrared	Behaviors	

Properties	of	Pion	BS	Wave	Function 
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•  Infrared	Behaviors	

Properties	of	Pion	BS	Wave	Function 
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•  Infrared	Behaviors	

Properties	of	Pion	BS	Wave	Function 
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•  Inflection	points	
•  Black	line:	F	function	
•  Red	line:	running	gluon	propagagor	
•  Blue	line:	vector	part	of	propagator	
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Valence	quark	picture	
		Definitive	of	a	hadron	–	it’s	how	we	tell	a	proton	from	a	neutron	
		Expresses	charge;	flavour;	baryon	number;	and	other	Poincaré-invariant	macroscopic	
quantum	numbers	
			Parton	physics	involves	time-dependent	dynamics	
	

2 HAMILTONIAN DYNAMICS 19

Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x̃) = ||∂x/∂x̃||, particularly
d4x = J (x̃) d4x̃. We shall keep track of the Jacobian only implicitly. The three-volume
element dω0 is treated correspondingly.

All the above considerations must be independent of this reparametrization. The
fundamental expressions like the Lagrangian can be expressed in terms of either x or x̃.
There is however one subtle point. By matter of convenience one defines the hypersphere
as that locus in four-space on which one sets the ‘initial conditions’ at the same ‘initial
time’, or on which one ‘quantizes’ the system correspondingly in a quantum theory. The
hypersphere is thus defined as that locus in four-space with the same value of the ‘time-
like’ coordinate x̃0, i.e. x̃0(x0, x) = const. Correspondingly, the remaining coordinates
are called ‘space-like’ and denoted by the spatial three-vector x̃ = (x̃1, x̃2, x̃3). Because
of the (in general) more complicated metric, cuts through the four-space characterized
by x̃0 = const are quite different from those with x̃0 = const. In generalized coordinates
the covariant and contravariant indices can have rather different interpretation, and one
must be careful with the lowering and rising of the Lorentz indices. For example, only
∂0 = ∂/∂x̃0 is a ‘time-derivative’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P 0

which in general are completely different objects. The actual choice of x̃(x) is a matter
of preference and convenience.

2D Forms of Hamiltonian Dynamics

Obviously, one has many possibilities to parametrize space-time by introducing some
generalized coordinates x̃(x). But one should exclude all those which are accessible by a
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equal-time	dynamics																	vs																light-front	dynamics		

t ≡ x0 t ≡ x+ = x0 + x3
Dirac	1949	

Projecting	BSWs	to	Light	Front 
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Pion’s	LFWF	definition 
we can write the paper now!

Let’s begin with the defintion of the lowest twist light front wave functions
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with k± = k ±
P
2 , �ni =

I
2(� · n�i � �i� · n) and � is the pion BS wave function. Where

 "#(x, k
2
?) denotes the pion light front wave function with anti parallel quark helicity and

 ""(x, k
2
?) the parallel quark helicity. For finite x and k? the above integration is convergent

and there is no need for the regularization at this stage. The renormalization constant Z2

has to be introduced when one performs the integration on k? to get PDA.

1 Rainbow-Ladder truncation

We solved BS wave function within rainbow-ladder truncation
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and the quark propagator satisfies the following equation
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the renormalization point has been choosen at µ = 2GeV .

1.1 gluon models

The Qin-Chang model taks the form
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D(k) =
8⇡

2
�m

ln(⌧ + (1 +
k2

⇤2
QCD

)2)

1

k2 +
m4

g

k2+m2
g

0

@1 +
D ⇤m

2
g

k2 +
m4

g

k2+m2
g

1

A (6)

1

10-4 0.01 1 100
10-4

0.01

1

100

104

k 2IGeV2M

D
Hk

2 L

,

0.001 0.01 0.1 1 10 100
10-4

0.001

0.01

0.1

1

k 2IGeV2M

M
Hk

2 L

Figure 1: Left:The k
2
dependence of gluon models. Curves: solid blue, Qin-Chang model;

solid red, the modified model. Right: The k
2
dependence of quark mass function. Curves:

dotted blue, mass related to Qin-Chang model; dotted red, mass related to the modified

model.

with mg = 0.5GeV and D = 22.4. The parameters are fitted by the pion decay constant

and mass. I compared the momentum dependence of these two models in Fig. 1 there the

di↵erence around k
2
= 1GeV

2
is remarkable. The modified model provides more smoothly

behavior than Qin-Chang model. I found such improvement is important to give high precise

numerical results. I compared the quark mass function in chiral limit within these two model

in Fig. 1. Compared to QinChang model the mass function decreases in the infrared region

but become little fatter in the medium momentum region. Such modification tends the mass

function to DB case.

2 Extract LFWF by it moment

We introduced the moment as
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• The relative momentum in light front wave function moment definition has been

choosen as

kµ = {0, k?, kk sin(✓), kk cos(✓)} (8)

2

LFWF’s	moments 
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•  Hadronic	scale;	
•  Small	pion	mass;	

Z
dx(2x� 1)0 (x, k?) /

Z
d
2
kkF0(k

2
? + k

2
k) + ... (14)

Z
dx(2x� 1)2 (x, k?) /

Z
d
2
kkk

2
kF2(k

2
? + k

2
k) + ... (15)

Z
dx(2x� 1)4 (x, k?) /

Z
d
2
kkk

4
kF4(k

2
? + k

2
k) + ... (16)

...... (17)

h�i|�ji / h(S�1
�S

�1)i|�ji / �ij (18)

H(x,Q2) =

Z
d
2
k?

1

16⇡3
x(1� x) (x, k? + (1� x)q?) (x, kk?) (19)

f(x) = H(x,Q2 = 0) =

Z
d
2
k?

1

16⇡3
x(1� x) (x, k?) (x, kk?) (20)

F (x) =

Z
dxH(x,Q2 = 0) =

Z
dx

Z
d
2
k?

1

16⇡3
x(1� x) (x, k? + (1� x)q?) (x, kk?) (21)

Q(y, Pz) =

Z 1

�1
dk1

Z 1

0

dxPz (x, k
2
1 + (x� y)2P 2

z
) (22)

�
(2)(u) =

Z
d
2
k? (u, k

2
?) (23)

�
(4)(u) =

Z
d
2
k?k

2
? (u, k

2
?) (24)

x
↵(1� x)↵ (25)

2

Does	Matter!	



Lei	Chang	(NKU) 

Second	moment 
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Infrared	soft		
Ultraviolet	hard	
BS	wave	function	tells	more	good	story	about	the	light	front	wave	function	
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Plotting	Pion’s	LFWF 
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Suppose	

• I can not get the stable value of fourth moment and higher ones which need more

Chebyshev polynomials and I think it just the numerical problem.

3 LFWF

Based on the Fig. 2 the present representation of LFWF is
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Overlap	representation 

1 Brodsky’s wave function

Brodsky’s light front wave function take the following form
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Consistent	to	triangle	diagram	calculation		
for	the	electromagnetic	form	factor	
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Electromagnetic	Form	Fator 

•  Leading-twist	valence-parton	light-front	wave	function	
•  Direct	calculation	of	Fπ(Q2)	via	overlap	representation	of	GPD	
•  No	assumption	of	validity	of	collinear	factorisation	
•  Computational	verification	…	good	approximation	on	Q2	>10	GeV2	

Assuming	collinear	factorisation	
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Pion electromagnetic form factor at spacelike momenta
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A novel method is employed to compute the pion electromagnetic form factor, Fπ(Q
2), on the

entire domain of spacelike momentum transfer using the Dyson-Schwinger equation (DSE) frame-
work in quantum chromodynamics (QCD). The DSE architecture unifies this prediction with that of
the pion’s valence-quark parton distribution amplitude (PDA). Using this PDA, the leading-order,
leading-twist perturbative QCD result for Q2Fπ(Q2) underestimates the full computation by just
15% on Q2 ! 8GeV2, in stark contrast with the result obtained using the asymptotic PDA. The
analysis shows that hard contributions to the pion form factor dominate for Q2 ! 8GeV2 but, even
so, the magnitude of Q2Fπ(Q

2) reflects the scale of dynamical chiral symmetry breaking, a pivotal
emergent phenomenon in the Standard Model.

PACS numbers: 13.40.Gp 14.40.Be 12.38.Lg 12.38.Aw

1:Introduction.—The pion occupies a special place in nu-
clear and particle physics. It is the archetype for meson-
exchange forces [1] and hence, even today, plays a critical
role as an elementary field in the nuclear structure Hamil-
tonian [2–4]. On the other hand, following introduction
of the constituent-quark model [5, 6], the pion came to be
considered as an ordinary quantum mechanical bound-
state of a constituent-quark and constituent-antiquark.
In that approach, however, explaining its properties re-
quires a finely tuned potential [7].

The modern paradigm views the pion in a very dif-
ferent manner [8]: it is both a conventional bound-state
in quantum field theory and the Goldstone mode associ-
ated with dynamical chiral symmetry breaking (DCSB)
in QCD, the strong interaction sector of the Standard
Model. Given this apparent dichotomy, fine tuning
should not play any role in a veracious explanation of
pion properties. The pion’s peculiarly low (lepton-like)
mass, its strong couplings to baryons, and numerous
other characteristics are all unavoidable consequences of
chiral symmetry and the pattern by which it is broken in
the Standard Model. Therefore, descriptions of the pion
within frameworks that cannot faithfully express sym-
metries and their breaking patterns (such as constituent-
quark models) are unreliable.

The fascination of the pion is compounded by the ex-
istence of exact results for both soft and hard processes.
For example, there are predictions for low-energy ππ
scattering [9, 10] and the neutral-pion’s two-photon de-
cay [11, 12]; and, on the other hand, perturbative QCD
(pQCD) yields predictions for pion elastic and transi-
tion form factors at asymptotically high energies [13–
15]. The empirical verification of the low-energy results
[16, 17] is complemented by a determined experimental
effort to test the high-energy form-factor predictions [18–
23]. In contrast to the low-energy experiments, however,

which check global symmetries and breaking patterns
that might be characteristic of a broad class of theories,
the high-energy experiments are a direct probe of QCD
itself; and some would argue that QCD has not passed
these tests.
We do not share this view, given that QCD’s failure

was also suggested in connection with measurements of
the pion’s valence-quark distribution function [24] and
that those claims are now known to be erroneous [25–
29]. Nevertheless, an explanation is required for the mis-
match between extant experiments on the pion’s electro-
magnetic form factor and what is commonly presumed
to be the prediction of pQCD.
The QCD prediction can be stated succinctly [13–15]:

∃Q0 > ΛQCD | Q2Fπ(Q
2)

Q2>Q2

0

≈ 16παs(Q
2)f2

πw 2
ϕ, (1)

where fπ = 92.2MeV is the pion decay constant [30],

αs(Q
2) = 4π/[β0 ln(Q2/Λ2

QCD)], (2)

β0 = 11 − (2/3)nf (nf is the number of active quark
flavours), is the leading-order expression for the strong
running coupling, and

wϕ =
1

3

∫ 1

0

dx
1

x
ϕπ(x) , (3)

where ϕπ(x) is the pion’s valence-quark parton distri-
bution amplitude (PDA). The value of Q0 is not pre-
dicted by pQCD. (Here ΛQCD ∼ 0.2GeV is the natural
mass-scale of QCD, whose dynamical generation through
quantisation spoils the conformal invariance of the clas-
sical massless theory [31–33].)
Notably, wϕ = 1 if one uses the “asymptotic” PDA

[13–15]

ϕπ(x) = ϕasy
π (x) = 6x(1− x). (4)
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Gluon mass scale----LFWFs 

mg	≈	0.5	GeV	:	A	dynamical	mass	scale	generation		

rC	≈	0.5	:	maxium	wavelength	
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