Plotting pion's light front wave function

Lei Chang(常雷)

leichang@nankai.edu.cn

Nankai University

FACT-I

Particle Data Group

Citation：C．Patrignani et al．（Particle Data Group），Chin．Phys．C，40， 100001 （2016）and 2017 update

$$
I\left(J^{P}\right)=0\left(1^{-}\right)
$$

or gluon
SU（3）color octet
Mass $m=0$ ．Theoretical value．A mass as large as a few MeV may not be precluded，see YNDURAIN 95.
－－We do not use the following data for averages，fits，limits，etc．

ABREU	92 E	DLPH	Spin 1，not 0
ALEXANDER	91 H	OPAL	Spin 1，not 0
BEHREND	82 D	CELL	Spin 1，not 0
BERGER	80 D	PLUT	Spin 1, not 0
BRANDELIK	80 C	TASS	Spin 1，not 0

gluon REFERENCES

YNDURAIN	95	PL B345 524
ABREU	92 E	PL B274 498
ALEXANDER	91 H	ZPHY C52 543
BEHREND	82 D	PL B110 329
BERGER	80 D	PL B97 459
BRANDELIK	80 C	PL B97 453

BRANDELIK
PL B97 453

F．J．Yndurain
P．Abreu et al．
G．Alexander et al．
H．J．Behrend et al．
C．Berger et al．
R．Brandelik et al．

In QCD：Gluons become massive！

Gauge Invariance and Mass

Julian Schwinger
Harvard University，Cambridge，Massachusetts，and University of California，Los Angeles，California
（Received July 20，1961）
－Schwinger
1962

It is argued that the gauge invariance of a vector field does not necessarily imply zero mass for an associ－ ated particle if the current vector coupling is sufficiently strong．This situation may permit a deeper under－ standing of nucleonic charge conservation as a manifestation of a gauge invariance，without the obvious conflict with experience that a massless particle entails．

Dynamical mass generation in continuum quantum chromodynamics
－Cornwall 1982
John M．Cornwall
Department of Physics，University of California，Los Angeles，California 90024
（Received 30 April 1982）

On the Lattice

Nankai University

a） $\mathrm{SU}(3)$

b）$S U(2)$

I．L．Bogolubsky，E．M．Ilgenfritz，M．Muller－Preussker，and A．Sternbeck，Lattice gluodynamics computation of Landau gauge Green＇s functions in the deep infrared，Phys．Lett．B 676， 69 （2009），arXiv： 0901.0736 ［hep－lat］
I．L．Bogolubsky，E．M．Ilgenfritz，M．Muller－Preussker，and
A．Sternbeck，The Landau gauge gluon and ghost propa－ gators in 4D $\mathrm{SU}(3)$ gluodynamics in large lattice volumes， arXiv： 0710.1968 ［hep－lat］

A．Cucchieri and T．Mendes，Numerical test of the Gribov－ Zwanziger scenario in Landau gauge，PoS QCD－TNT 09， 026 （2009），arXiv： 1001.2584 ［hep－lat］

Spectral representation

$$
\Delta\left(q^{2}\right)=\int_{0}^{\infty} \mathrm{d} \sigma \frac{\rho(\sigma)}{q^{2}+\sigma},
$$

if

$$
\Delta^{\prime \prime}\left(q_{\star}^{2}\right)=2 \int_{0}^{\infty} \mathrm{d} \sigma \frac{\rho(\sigma)}{\left(q_{\star}^{2}+\sigma\right)^{3}}=0 .
$$

Non positive definite

$$
m_{g} \approx 0.5 \mathrm{GeV}
$$

>......
> Can we quantitatively understand quark and gluon confinement in quantum chromodynamics and the existence of a mass gap?

Quantum chromodynamics, or QCD, is the theory describing the strong nuclear force. Carried by gluons, it binds quarks into particles like protons and neutrons. Apparently, the tiny subparticles are permanently confined: one can't pull a quark or a gluon from a proton because the strong force gets stronger with distance and snaps them right back inside.

High Impact Paper

Low Impact Paper

Gluon mass scale

Observables???

FACT=IN

Bound state and quantum field theory

QED

Field theory Successful：
－Nonrelativistic quantum mechanics to handle bound state；
－Perturbation theory to handle relativistic effects

Trace anomaly

＞All renormalisable four－ dimensional theories possess a trace anomaly；
＞The size of the trace anomaly in QED must be great deal smaller than that in QCD．

Field theory not Successful yet：
－Growth of the running coupling constant in the infrared region；
－Confinement；
－Dynamical Chiral Symmetry Breaking；
－Possible nontrivial vacuum structure in hadron

Constituent quark model－＞intuitive understanding of many low energy observables．

Minimum number of constituents required

Feynman＇s parton model－＞intuitive understanding of high－ energy phenomena．

Constituent picture； Probabilistic interpretation of distribution functions

QCD vacuum in the hadron is very complicated medium Individual quarks and gluons are lost in the sea

Both the constituent quark model and the parton model are put in peril by QCD with a possible complicated vacuum structure．

Why Pion－－－－－Messager of QCD

－Pion is Massless．．．

－In October 1934，Hideki Yukawa predicated the existence of a＂heavy quantum＂ meson，exchanging nuclear force between neutrons and protons．
－It was discovered by Cecil Powel in 1949 in cosmic ray tracks in a photographic emulsion．
－Pion was nicely accommodated in the Eight Fold way of Murray Gell－Mann in 1961.
－Yoichiro Nambu associated it with CSB in 1960.

Pion's dichotomy

Maris, Roberts and Tandy, Phys. Lett. B420(1998) 267-273
> Pion's Bethe-Salpeter amplitude
Solution of the Bethe-Salpeter equation

$$
\begin{aligned}
\Gamma_{\pi^{j}}(k ; P) & =\tau^{\pi^{j}} \gamma_{5}\left[i E_{\pi}(k ; P)+\gamma \cdot P F_{\pi}(k ; P)\right. \\
& \left.+\gamma \cdot k k \cdot P G_{\pi}(k ; P)+\sigma_{\mu \nu} k_{\mu} P_{\nu} H_{\pi}(k ; P)\right]
\end{aligned}
$$

$>$ Dressed-quark propagator $S(p)=\frac{1}{i \gamma \cdot p A\left(p^{2}\right)+B\left(p^{2}\right)}$
> Axial-vector Ward-Takahashi identity entails(chiral limit)

$$
f_{\pi} E\left(k ; P \mid P^{2}=0\right)=B\left(k^{2}\right)+(k \cdot P)^{2} \frac{d^{2} B\left(k^{2}\right)}{d^{2} k^{2}}+\ldots
$$

- Given the dichotomy of pion the fine-tuning should not play any role in an explanation of pion properties;
- Descriptions of pion within frameworks that cannot faithfully express symmetries and their breaking patterns(such as constituent-quark models) are unreliable;
- Hence, pion properties are an almost direct measure of the dressed-quark mass function.

Dyson-Schwinger Equation scope

Bethe-Salpeter Equations

Modeling linteraction

－Landau Gauge
－Blue line：QC
－Red line：New
－ $\mathrm{m}_{\mathrm{g}}=0.5 \mathrm{GeV}$

$$
\begin{gathered}
D_{\mu \nu}(k)=\left(\delta_{\mu \nu}-\frac{k_{\mu} k_{\nu}}{k^{2}}\right) D\left(k^{2}\right) \\
D_{Q C}(s)=8 \pi^{2} \frac{d^{3}}{\omega^{5}} \mathrm{e}^{-\frac{s}{\omega^{2}}}+\frac{8 \pi^{2} \gamma_{m}}{\ln \left(\tau+\left(1+\frac{s}{\Lambda_{Q C D}^{2}}\right)^{2}\right)} \frac{1-\mathrm{e}^{-s}}{s}
\end{gathered}
$$

vs

$$
D_{C}(s)=\frac{8 \pi^{2} \gamma_{m}}{\ln \left(\tau+\left(1+\frac{s}{\Lambda_{Q C D}^{2}}\right)^{2}\right)} \frac{1}{s+\frac{m_{g}^{4}}{s+m_{g}^{2}}}\left(1+\frac{d}{s+\frac{m_{g}^{4}}{s+m_{g}^{2}}}\right)
$$

- k^{2} dependence of quark propagator and gluon mass
- Red line: running gluon propagagor
- Inflection points
- Red line: running gluon propagagor
- Blue line: vector part of propagator
- Blue line: vector part of propagator

20

- at around $k^{2} \approx 0.5 \mathrm{mg}^{2}$ there exists an inflection pфint in quark propagator consistently

- Inflection points
- Red line: running gluon propagator
- Blue line: vector part of propagator

Pion Bethe－Salpeter Wave Function

南间大
－Solving BSEs

－Eigen equation
－General forms of wave function
$\chi_{\pi}(k ; P)=\gamma_{5}\left(i E(k ; P)+\gamma \cdot P F(k ; P)+\gamma \cdot k G(k ; P)+\sigma_{\mu \nu} k_{\mu} P_{\nu} H(k ; P)\right)$
－Rest frame

$$
\begin{aligned}
& P_{\mu}=\left\{0,0,0, i m_{\pi}\right\} \text { E,F,G,H are two dimensional } \\
& k_{\mu}=\sqrt{k^{2}}\left\{0,0, \sqrt{1-z^{2}}, z\right\} \text { functions with respect to } \mathrm{k}^{2} \\
& \text { and } \mathrm{z}
\end{aligned}
$$

－Numerical tricks：

$$
D\left((p-q)^{2}\right)=D\left(p^{2}+q^{2}-2 \sqrt{p^{2} q^{2}} \cos (\theta)\right)=\sum_{n=0}^{N_{c}} D_{n}\left(p^{2}, q^{2}\right) U_{n}(\cos (\theta))
$$

$$
\int d^{4} l \delta^{4}(l) \frac{k \cdot l p \cdot l}{l^{2}} f(k, p, l)=\frac{1}{4} \int d^{4} l \delta^{4}(l) k \cdot p f(k, p, l)
$$

$$
\mathcal{F}(k ; P)=\sum_{n=0}^{M} \mathcal{F}_{n}\left(k^{2}\right) U_{n}(z)
$$

$\chi_{\pi}(k ; P)=\gamma_{5}\left(i E(k ; P)+\gamma \cdot P F(k ; P)+\gamma \cdot k G(k ; P)+\sigma_{\mu \nu} k_{\mu} P_{\nu} H(k ; P)\right)$
－Ultraviolet Behaviors（up to logarithm）

$$
\mathcal{F}_{n}\left(k^{2}\right) \propto \frac{1}{k^{4+\frac{n}{2}}}
$$

Note－I：$\quad f_{\pi} E\left(k ; P \mid P^{2}=0\right)=B\left(k^{2}\right)+(k \cdot P)^{2} \frac{d^{2} B\left(k^{2}\right)}{d^{2} k^{2}}+\ldots$
Note－II：Nakanishi reprensation

$$
F(k ; P)=\int_{-1}^{1} d z \int_{0}^{\infty} d \gamma \frac{\rho(\gamma, z)}{\left(k^{2}+z k \cdot P+M^{2}+\gamma\right)^{3}}
$$

－Infrared Behaviors
$\chi_{\pi}(k ; P)=\gamma_{5}\left(i E(k ; P)+\gamma \cdot P F(k ; P)+\gamma \cdot k G(k ; P)+\sigma_{\mu \nu} k_{\mu} P_{\nu} H(k ; P)\right)$
－Infrared Behaviors

k^{2} dependence of first Chebyshev moments of $F(k ; P)$
$\chi_{\pi}(k ; P)=\gamma_{5}\left(i E(k ; P)+\gamma \cdot P F(k ; P)+\gamma \cdot k G(k ; P)+\sigma_{\mu \nu} k_{\mu} P_{\nu} H(k ; P)\right)$
－Infrared Behaviors

－Inflection points
－Black line：F function
－Red line：running gluon propagagor
－Blue line：vector part of propagator

Projecting BSWs to Light Front

equal-time dynamics

$$
t \equiv x^{0}
$$

light-front dynamics
Dirac 1949

$$
t \equiv x^{+}=x^{0}+x^{3}
$$

Valence quark picture

Definitive of a hadron - it's how we tell a proton from a neutron
Expresses charge; flavour; baryon number; and other Poincaré-invariant macroscopic quantum numbers
Parton physics involves time-dependent dynamics

Projecting BSWs on Light Front

DSE group 2013-2018

1, Imaging dynamical chiral symmetry breaking: pion wave function on the light front LC, I. Cloet, J. Cobos-Martinez, C. D. Roberts, S. M. Schmidt, P. C. Tandy Phys. Rev. Lett. 110 (2013) 132001
2, Light front distribution of the chiral condensate
LC, C. D. Roberts, S. M. Schmidt
Phys. Lett. B 727 (2013) 255
3, Distribution amplitudes of light-quark mesons from lattice QCD
J. Segovia, LC, I. Cloet, C. D. Roberts, S. M. Schmidt, H-s Zong

Phys. Lett. B 731 (2014) 13
4, Parton distribution amplitudes of light vector mesons
F. Gao, LC, Yu-xin Liu, C. D. Roberts, S. M. Schmidt

Phys. Rev. D 90 (2014) 014011
5, Flavor symmetry breaking in the kaon parton distribution amplitudes
C. Shi, LC, C. D. Roberts, S. M. Schmidt, P. C. Tandy, H-s Zong

Phys. Lett. B 738 (2014) 512
6, Basic features of the pion valence-quark distribution function
LC, C. Mezrag, H. Moutarde, C. D. Roberts, J. R-Quintero, P. C. Tandy
Phys. Lett. B 737 (2014) 23
7, Pion valence-quark parton distribution function
LC, A. W. Thomas
Phys. Lett. B 749 (2015) 547
8, Kaon and pion parton distribution amplitudes to twist-three
C. Shi, C. Chen, LC, C. D. Roberts, S. M. Schmidt, H-s Zong

Phys. Rev. D 92 (2015) 014035
9, Leading-twist parton distribution amplitudes of S-wave heavy-quarkonia
M. Ding, F. Gao, LC, Yu-xin Liu, C. D. Roberts

Phys. Lett. B 753 (2016) 330
10, Valence-quark distribution functions in the kaon and pion
C. Chen, LC, C. D. Roberts, S. Wan, H-s Zong

Phys. Rev. D 93 (2016) 074021

11, Leading-twist distribution amplitudes of scalar- and vectormesons
B. Li, LC, M. Ding, C. D. Roberts, H-s Zong

Phys. Rev. D 94 (2016) 094014
12, Distribution amplitudes of radially-excited pion and kaon mesons
B. Li, LC, F. Gao, C. D. Roberts, S. M. Schmidt, H-s Zong

Phys. Rev. D 93 (2016) 114033
13, Bayesian extraction of the parton distribution amplitudes from the Bethe-Salpeter wave function
F. Gao, LC, yu-xin Liu

Phys. Lett. B 770 (2017) 551
14, Parton distribution amplitudes: Revealing correlations within the proton and Roper
C. Mezrag, J. Segovia, LC, C. D. Roberts

Phys. Lett. B 783 (2018) 263
15, Pion and Kaon valence-quark parton quasidistributions
S-s Xu, LC, C. D. Roberts, H-s Zong
Phys. Rev. D 97 (2018) 094014

Keywords: Amplitudes
 Nakanishi representation Moments

$$
\begin{equation*}
\psi_{\uparrow \downarrow}\left(x, k_{\perp}^{2}\right)=\frac{1}{f_{\pi}} \int \frac{d^{2} k_{\|}}{\pi} \delta\left(n \cdot k_{+}-x n \cdot P\right) \operatorname{tr}_{\mathrm{CD}}\left[\gamma_{5} \gamma \cdot n \chi\left(k_{+}, k_{-}\right)\right] \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{\perp}^{i} \psi_{\uparrow \uparrow}\left(x, k_{\perp}^{2}\right)=\frac{1}{f_{\pi}} \int \frac{d^{2} k_{\|}}{\pi} \delta\left(n \cdot k_{+}-x n \cdot P\right) \operatorname{tr}_{\mathrm{CD}}\left[\gamma_{5} \sigma_{n i} \chi\left(k_{+}, k_{-}\right)\right] \tag{2}
\end{equation*}
$$

with $k_{ \pm}=k \pm \frac{P}{2}, \sigma_{n i}=\frac{I}{2}\left(\gamma \cdot n \gamma_{i}-\gamma_{i} \gamma \cdot n\right)$ and χ is the pion BS wave function．Where $\psi_{\uparrow \downarrow}\left(x, k_{\perp}^{2}\right)$ denotes the pion light front wave function with anti parallel quark helicity and $\psi_{\uparrow \uparrow}\left(x, k_{\perp}^{2}\right)$ the parallel quark helicity．For finite x and k_{\perp} the above integration is convergent

LFWF＇s moments

$$
\begin{aligned}
& \quad \int_{0}^{1} d x(2 x-1)^{m} \psi\left(x, k_{\perp}\right)=\frac{1}{f_{\pi}} \int \frac{d^{2} k_{\|}}{\pi} \frac{1}{n \cdot P}\left(\frac{2 n \cdot k}{n \cdot P}\right)^{m} \operatorname{tr}_{\mathrm{CD}}\left[\gamma_{5} \gamma \cdot n \chi\left(k_{+}, k_{-}\right)\right] \\
& \text {with } \quad k_{\mu}=\left\{0, \sqrt{k_{\perp}^{2}}, \sqrt{k_{\|}^{2}} \sqrt{1-z_{1}^{2}}, \sqrt{k_{\|}^{2}} z_{1}\right\}
\end{aligned}
$$

We have

$$
\mathcal{F}(k ; P)=\sum_{n=0}^{M} \mathcal{F}_{n}\left(k^{2}\right) U_{n}(z)=\sum_{n=0}^{M} \mathcal{F}_{n}\left(k_{\perp}^{2}+k_{\|}^{2}\right) U_{n}\left(\sqrt{\frac{k_{\|}^{2}}{k_{\perp}^{2}+k_{\|}^{2}}} z_{1}\right)
$$

$\left\langle(2 x-1)^{2}\right\rangle$

- Hadronic scale;
- Small pion mass;

Does Matter!

Distribution amplitudes of light-quark mesons from lattice QCD

Jorge Segovia (Argonne, PHY), Lei Chang (Adelaide U.) , Ian C. Cloët, Craig D. Roberts (Argonne, PHY) , Sebastian M. Schmidt (IAS, Julich) , Hong-shi Zong (Nanjing
U. \& Beijing, Inst. Theor. Phys. \& Purple Mountain Observ.)

Nov 6, 2013-6 pages
Phys.Lett. B731 (2014) 13-18
(2014-04-04)
DOI: 10.1016/j.physletb. 2014.02.006
e-Print: arXiv:1311.1390 [nucl-th] | PDF

Second moment

$\left\langle(2 x-1)^{2}\right\rangle$

$x^{0.182}(1-x)^{0.182}$

Infrared soft
Ultraviolet hard
BS wave function tells more good story about the light front wave function

Plotting Pion＇s LFWF

Suppose $\psi_{\uparrow \downarrow}\left(x, k_{\perp}^{2}\right)=\mathcal{N C}\left(k_{\perp}^{2}\right) \frac{\Gamma\left[2+2 \alpha\left(k_{\perp}^{2}\right)\right]}{\Gamma\left[1+\alpha\left(k_{\perp}^{2}\right)\right]^{2}}(x(1-x))^{\alpha\left(k_{\perp}^{2}\right)}$

Overlap representation

南副大
Nankai University

The overlap represention for the GPD can be written as

$$
\begin{gathered}
\mathcal{H}\left(x, Q^{2}\right)=\int d^{2} k_{\perp} \frac{1}{16 \pi^{3}} \psi\left(x, k_{\perp}+(1-x) q_{\perp}\right) \psi\left(x, k_{\perp}\right) \\
\mathcal{H}\left(x, Q^{2}\right)=\int \Gamma^{2} k_{\perp} \frac{1}{16 \pi^{3}} x \propto\left\langle\left(S^{-1} \chi S^{-1}\right)_{i} \mid \chi_{j}\right\rangle \propto \delta_{i j} \\
x(1-x) \psi\left(x, k_{\perp}+(1-x) q_{\perp}\right) \psi\left(x, k_{k_{\perp}}\right)
\end{gathered}
$$

Consistent to triangle diagram calculation for the electromagnetic form factor

Consistent to C．Mezrag etal，arXiv：1411．6634

Electromagnetic Form Fator

$$
F(x)=\int d x \mathcal{H}\left(x, Q^{2}=0\right)=\int d x \int d^{2} k_{\perp} \frac{1}{16 \pi^{3}} x(1-x) \psi\left(x, k_{\perp}+(1-x) q_{\perp}\right) \psi\left(x, k_{k_{\perp}}\right)
$$

－Leading－twist valence－parton light－front wave function
－Direct calculation of $F_{\pi}\left(Q^{2}\right)$ via overlap representation of GPD
－No assumption of validity of collinear factorisation
－Computational verification ．．．good approximation on $Q^{2}>10 \mathrm{GeV}^{2}$
$\exists Q_{0}>\Lambda_{\mathrm{QCD}} \mid Q^{2} F_{\pi}\left(Q^{2}\right)^{Q^{2}>Q_{0}^{2}} 16 \pi \alpha_{s}\left(Q^{2}\right) f_{\pi}^{2} w_{\varphi}^{2}, \quad$（1） where $f_{\pi}=92.2 \mathrm{MeV}$ is the pion decay constant［30］，
$\alpha_{s}\left(Q^{2}\right)=4 \pi /\left[\beta_{0} \ln \left(Q^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)\right]$,
$\beta_{0}=11-(2 / 3) n_{f}$（ n_{f} is the number of active quark flavours），is the leading－order expression for the strong running coupling，and

$$
\begin{equation*}
w_{\varphi}=\frac{1}{3} \int_{0}^{1} d x \frac{1}{x} \varphi_{\pi}(x), \tag{3}
\end{equation*}
$$

where $\varphi_{\pi}(x)$ is the pion＇s valence－quark parton distri－ bution amplitude（PDA）．The value of Q_{0} is not pre－

Gluon mass scale－－－－LFWFs

南副大
Nankai University
$m_{g} \approx 0.5 \mathrm{GeV}:$ A dynamical mass scale generation
$r_{C} \approx 0.5$ ：maxium wavelength

Quark and Hadron

Gluon mass scale－－－－LFWFs

南副大
Nankai University
$m_{g} \approx 0.5 \mathrm{GeV}:$ A dynamical mass scale generation
$r_{C} \approx 0.5$ ：maxium wavelength

Quark and Hadron

Lei Chang（NKU）
Thanks for youir aittent on

