New Insights on the Drell-Yan Angular Distributions

Jen-Chieh Peng

University of Illinois at Urbana-Champaign
Workshop on "Mapping Parton Distribution Amplitudes and Functions"

ECT*, Trento, Italy
September 10-14, 2018

Based on the papers of JCP, Wen-Chen Chang, Evan McClellan, Oleg Teryaev, Phys. Lett. B758 (2016) 384, PRD 96 (2017) 054020, and arXiv:1808.04398

First Dimuon Experiment

$p+U \rightarrow \mu^{+}+\mu^{-}+X \quad 29 \mathrm{GeV}$ proton
Lederman et al. PRL 25 (1970) 1523
Experiment originally designed to search for neutral weak boson (Z^{0})
Missed the J / Ψ signal !
"Discovered" the Drell-Yan process

The Drell-Yan Process

MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*

Sidney D. Drell and Tung-Mow Yan

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305
(Received 25 May 1970)
On the basis of a parton model studied earlier we consider the production process of large-mass lepton pairs from hadron-hadron inelastic collisions in the limiting region, $s \rightarrow \infty, Q^{2} / s$ finite, Q^{2} and s being the squared invariant masses of the lepton pair and the two initial hadrons, respectively. General scaling properties and connections with deep inelastic electron scattering are discussed. In particular, a rapidly decreasing cross section as $Q^{2} / s \rightarrow 1$ is predicted as a consequence of the observed rapid falloff of the inelastic scattering structure function νW_{2} near threshold.

$$
\left(\frac{d^{2} \sigma}{d x_{1} d x_{2}}\right)_{\text {D.Y. }}=\frac{4 \pi \alpha^{2}}{9 s x_{1} x_{2}} \sum_{a} e_{a}^{2}\left[q_{a}\left(x_{1}\right) \bar{q}_{a}\left(x_{2}\right)+\bar{q}_{a}\left(x_{1}\right) q_{a}\left(x_{2}\right)\right]
$$

Naive Drell-Yan and Its Successor*

T-M. Yan
Floyd R. Newman Laboratory of Nuclear Studies
Cornell University
Ithaca, NY 14853

February 1, 2008

Abstract

We review the development in the field of lepton pair production since proposing parton-antiparton annibilation as the mechanism of massive lepton pair production. The basic physical picture of the Drell-Yan model has survived the test of QCD, and the predictions from the QCD improved version have been conflrmed by the numerous experiments performed in the last three decades. The model has provided an active theoretical arena for studying infrared and collinear divergences in QCD. It is now so well understood theoretically that it has become a powerful tool for new phyiscs information such as precision messurements of the W mass and lepton and quark sizes.
"... our original crude fit did not even remotely resemble the data. Sid and I went ahead to publish our paper because of the model's simplicity..."
"... the successor of the naïve model, the QCD improved version, has been confirmed by the experiments..."
"The process has been so well understood theoretically that it has become a powerful tool for precision measurements and new physics."

[^0]
Complementarity between DIS and Drell-Yan

Drell-Yan

$\mathrm{pA} \rightarrow \mu^{+} \mu^{-} X$

Ann.Rev.Nucl. Part. Sci. 49 (1999) 217;

Peng and Qiu, Prog. Part.
Nucl. Phys. 76 (2014)43

Both DIS and Drell-Yan process are tools to probe the quark and antiquark structure in hadrons (factorization, universality)

Fermilab Dimuon Spectrometer

(E605 / 772 / 789 / 866 / 906 /1039)

1) Fermilab E772 (proposed in 1986 and completed in 1988)
"Nuclear Dependence of Drell-Yan and Quarkonium Production"
2) Fermilab E789 (proposed in 1989 and completed in 1991)
"Search for Two-Body Decays of Heavy Quark Mesons"
3) Fermilab E866 (proposed in 1993 and completed in 1996)
"Determination of \bar{d} / \bar{u} Ratio of the Proton via Drell-Yan"
4) Fermilab E906 (proposed in 1999, completed in 7/2017)
"Drell-Yan with the FNAL Main Injector"
5) Fermilab E1039 (proposed in 2015, expected to start in 2019)
"Drell-Yan with transversely polarized target"

EXPERIMENT E789- Moving Cable at Meson. "The Snake".

Angular Distribution in the "Naïve" Drell-Yan

(3) The virtual photon will be predominantly transversely polarized if it is formed by annihilation of spin- $\frac{1}{2}$ parton-antiparton pairs. This means a distribution in the di-muon rest system varying as $\left(1+\cos ^{2} \theta\right)$ rather than $\sin ^{2} \theta$ as found in Sakurai's ${ }^{10}$ vector-dominance model, where θ is the angle of the muon with respect to the timelike photon momentum. The model used in Fig.

Drell-Yan angular distribution

Lepton Angular Distribution of "naïve" Drell-Yan:

$$
\frac{d \sigma}{d \Omega}=\sigma_{0}\left(1+\lambda \cos ^{2} \theta\right) ; \quad \lambda=1
$$

Data from Fermilab E772
(Ann. Rev. Nucl. Part.
Sci. 49 (1999) 217-253)

Why is the lepton angular distribution $1+\cos ^{2} \theta$?
Helicity conservation and parity

Adding all four helicity configurations:

$$
d \sigma \sim 1+\cos ^{2} \theta
$$

$$
\begin{gathered}
R L \rightarrow R L \\
d \sigma \sim(1+\cos \theta)^{2} \\
R L \rightarrow L R \\
d \sigma \sim(1-\cos \theta)^{2} \\
L R \rightarrow L R \\
d \sigma \sim(1+\cos \theta)^{2} \\
L R \rightarrow R L \\
d \sigma \sim(1-\cos \theta)^{2}
\end{gathered}
$$

Drell-Yan lepton angular distributions

Θ and Φ are the decay polar and azimuthal angles of the μ in the dilepton rest-frame

Collins-Soper frame

A general expression for Drell-Yan decay angular distributions:
$\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi\right]$
Lam-Tung relation: $1-\lambda=2 v$

- Reflect the spin- $1 / 2$ nature of quarks
(analog of the Callan-Gross relation in DIS)
- Insensitive to QCD - corrections

Decay angular distributions in pion-induced Drell-Yan

$$
\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi\right]
$$

$140 \mathrm{GeV} / \mathrm{c}$

$194 \mathrm{GeV} / \mathrm{c}$

$286 \mathrm{GeV} / \mathrm{c}$
NA10 $\pi^{-}+\mathbf{W}$

Z. Phys.

37 (1988) 545

Dashed curves are from pQCD calculations
$v \neq 0$ and v increases with p_{T}

Decay angular distributions in pion-induced Drell-Yan Is the Lam-Tung relation ($1-\lambda-2 v=0$) violated?

Data from NA10 (Z. Phys. 37 (1988) 545)
Violation of the Lam-Tung relation suggests interesting new origins
(Brandenburg, Nachtmann, Mirkes, Brodsky, Khoze, Müller, Eskolar, Hoyer,Väntinnen, Vogt, etc.)

Boer-Mulders function $h_{1}{ }^{\perp}$ -

- Boer pointed out that the $\cos 2 \phi$ dependence can be caused by the presence of the Boer-Mulders function.
- h_{1}^{\perp} can lead to an azimuthal dependence with $v \propto\left(\frac{h_{1}^{\perp}}{f_{1}}\right)\left(\frac{\bar{h}_{1}^{\perp}}{\bar{f}_{1}}\right)$

$$
\begin{aligned}
& h_{1}^{\perp}\left(x, k_{T}^{2}\right)=\frac{\alpha_{T}}{\pi} c_{H} \frac{M_{C} M_{H}}{k_{T}^{2}+M_{C}^{2}} e^{-\alpha_{r} k_{T}^{2}} f_{1}(x) \\
& v=16 \kappa_{1} \frac{Q_{T}^{2} M_{C}^{2}}{\left(Q_{T}^{2}+4 M_{C}^{2}\right)^{2}} \\
& \kappa_{1}=0.47, M_{C}=2.3 \mathrm{GeV}
\end{aligned}
$$

Boer, PRD 60 (1999) 014012
$v>0$ implies valence $B M$ functions for pion and nucleon have same signs

Azimuthal $\cos 2 \Phi$ Distribution in $p+d$ Drell-Yan Lingyan Zhu et al., PRL 99 (2007) 082301; PRL 102 (2009) 182001

With Boer-Mulders function h_{1}^{\perp} :

$v\left(\pi-W \rightarrow \mu^{+} \mu X\right) \sim$ [valence $\left.h_{1}{ }^{\perp}(\pi)\right]$ * [valence $\left.h_{1}{ }^{\perp}(p)\right]$
$v(p d \rightarrow \mu+\mu-X) \sim\left[\right.$ valence $\left.h_{1}^{\perp}(p)\right]$ * sea $\left.h_{1}^{\perp}(p)\right]$

Lam-Tung relation from CDF Z-production

$$
\begin{gathered}
\quad p+\bar{p} \rightarrow e^{+}+e^{-}+X \text { at } \sqrt{\mathrm{s}}=1.96 \mathrm{TeV} \\
\text { arXiv:1103.5699 (PRL } 106 \text { (2011) } 241801 \text {) }
\end{gathered}
$$

- Strong $\mathrm{p}_{\mathrm{T}}\left(\mathrm{q}_{\mathrm{T}}\right)$ dependence of λ and v
- Lam-Tung relation $(1-\lambda=2 v)$ is satisfied within experimental uncertainties (TMD is not expected to be important at large p_{T})

Recent CMS (ATLAS) data for Z-boson production in $p+p$ collision at 8 TeV

- Striking q_{T} dependencies for λ and v were observed at two rapidity regions
- Is Lam-Tung relation violated?

Recent data from CMS for Z-boson production in $p+p$ collision at 8 TeV

- Yes, the Lam-Tung relation is violated $(1-\lambda>2 v)$!
- Can one understand the origin of the violation of the Lam-Tung relation?

Interpretation of the CMS Z-production results

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} \propto & \left(1+\cos ^{2} \theta\right)+\frac{A_{0}}{2}\left(1-3 \cos ^{2} \theta\right)+A_{1} \sin 2 \theta \cos \phi \\
& +\frac{A_{2}}{2} \sin ^{2} \theta \cos 2 \phi+A_{3} \sin \theta \cos \phi+A_{4} \cos \theta \\
& +A_{5} \sin ^{2} \theta \sin 2 \phi+A_{6} \sin 2 \theta \sin \phi+A_{7} \sin \theta \sin \phi
\end{aligned}
$$

Questions:

- How is the above expression derived?
- Can one express $A_{0}-A_{p}$ in terms of some quantities?
- Can one understand the q_{T} dependence of A_{0}, A_{1}, A_{2}, etc?
- Can one understand the origin of the violation of Lam-Tung relation?

How is the angular distribution expression derived?

Define three planes in the Collins-Soper frame

1) Hadron Plane

- Contains the beam \vec{P}_{B} and target \vec{P}_{T} momenta

- Angle β satisfies the relation $\tan \beta=q_{T} / Q$
- Q is the mass of the dilepton (Z)
- when $q_{T} \rightarrow 0, \beta \rightarrow 0^{\circ}$; when $q_{T} \rightarrow \infty, \beta \rightarrow 90^{\circ}$

How is the angular distribution expression derived?

Define three planes in the Collins-Soper frame

1) Hadron Plane

- Contains the beam \vec{P}_{B} and target \vec{P}_{T} momenta
- Angle β satisfies the relation $\tan \beta=q_{T} / Q$

2) Quark Plane

- q and \bar{q} have head-on collision along the \hat{z}^{\prime} axis
- \hat{z}^{\prime} and \hat{z} axes form the quark plane
- \hat{z}^{\prime} axis has angles θ_{1} and ϕ_{1} in the C-S frame

How is the angular distribution expression derived?

Define three planes in the Collins-Soper frame

1) Hadron Plane

- Contains the beam \vec{P}_{B} and target \vec{P}_{T} momenta
- Angle β satisfies the relation $\tan \beta=q_{T} / Q$

2) Quark Plane

- q and \bar{q} have head-on collision along the \hat{z}^{\prime} axis
- \hat{z}^{\prime} axis has angles θ_{1} and ϕ_{1} in the C-S frame

3) Lepton Plane

- l^{-}and l^{+}are emitted back-to-back with equal $|\vec{P}|$
- l^{-}and \hat{z} form the lepton plane
- l^{-}is emitted at angle θ and ϕ in the C-S frame

How is the angular distribution expression derived?

How is the angular distribution expression derived?

$$
\frac{d \sigma}{d \Omega} \propto 1+a \cos \theta_{0}+\cos ^{2} \theta_{0}
$$

$$
\cos \theta_{0}=\cos \theta \cos \theta_{1}+\sin \theta \sin \theta_{1} \cos \left(\phi-\phi_{1}\right)
$$

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} \propto & \left(1+\cos ^{2} \theta\right)+\frac{\sin ^{2} \theta_{1}}{2}\left(1-3 \cos ^{2} \theta\right) \\
& +\left(\frac{1}{2} \sin 2 \theta_{1} \cos \phi_{1}\right) \sin 2 \theta \cos \phi \\
& +\left(\frac{1}{2} \sin ^{2} \theta_{1} \cos 2 \phi_{1}\right) \sin ^{2} \theta \cos 2 \phi \\
& +\left(a \sin \theta_{1} \cos \phi_{1}\right) \sin \theta \cos \phi+\left(a \cos \theta_{1}\right) \cos \theta \\
& +\left(\frac{1}{2} \sin ^{2} \theta_{1} \sin 2 \phi_{1}\right) \sin ^{2} \theta \sin 2 \phi \\
& +\left(\frac{1}{2} \sin 2 \theta_{1} \sin \phi_{1}\right) \sin 2 \theta \sin \phi \\
& +\left(a \sin \theta_{1} \sin \phi_{1}\right) \sin \theta \sin \phi .
\end{aligned}
$$

All eight angular distribution terms are obtained!

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} \propto & \left(1+\cos ^{2} \theta\right)+\frac{\sin ^{2} \theta_{1}}{2}\left(1-3 \cos ^{2} \theta\right) \\
& +\left(\frac{1}{2} \sin 2 \theta_{1} \cos \phi_{1}\right) \sin 2 \theta \cos \phi \\
& +\left(\frac{1}{2} \sin ^{2} \theta_{1} \cos 2 \phi_{1}\right) \sin ^{2} \theta \cos 2 \phi \\
& +\left(a \sin \theta_{1} \cos \phi_{1}\right) \sin \theta \cos \phi+\left(a \cos \theta_{1}\right) \cos \theta \\
& +\left(\frac{1}{2} \sin ^{2} \theta_{1} \sin 2 \phi_{1}\right) \sin ^{2} \theta \sin 2 \phi \\
& +\left(\frac{1}{2} \sin 2 \theta_{1} \sin \phi_{1}\right) \sin 2 \theta \sin \phi \\
& +\left(a \sin \theta_{1} \sin \phi_{1}\right) \sin \theta \sin \phi
\end{aligned}
$$

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} \propto & \left(1+\cos ^{2} \theta\right)+\frac{A_{0}}{2}\left(1-3 \cos ^{2} \theta\right) \\
& +A_{1} \sin 2 \theta \cos \phi \\
& +\frac{A_{2}}{2} \sin ^{2} \theta \cos 2 \phi \\
& +A_{3} \sin \theta \cos \phi+A_{4} \cos \theta \\
& +A_{5} \sin ^{2} \theta \sin 2 \phi \\
& +A_{6} \sin 2 \theta \sin \phi \\
& +A_{7} \sin \theta \sin \phi
\end{aligned}
$$

$A_{0}-A_{1}$ are entirely described by θ_{1}, ϕ_{1} and a

Angular distribution coefficients $\mathrm{A}_{0}-\mathrm{A}_{7}$

$$
\begin{aligned}
& A_{0}=\left\langle\sin ^{2} \theta_{1}\right\rangle \\
& A_{1}=\frac{1}{2}\left\langle\sin 2 \theta_{1} \cos \phi_{1}\right\rangle \\
& A_{2}=\left\langle\sin ^{2} \theta_{1} \cos 2 \phi_{1}\right\rangle \\
& A_{3}=a\left\langle\sin \theta_{1} \cos \phi_{1}\right\rangle \\
& A_{4}=a\left\langle\cos \theta_{1}\right\rangle \\
& A_{5}=\frac{1}{2}\left\langle\sin ^{2} \theta_{1} \sin 2 \phi_{1}\right\rangle \\
& A_{6}=\frac{1}{2}\left\langle\sin 2 \theta_{1} \sin \phi_{1}\right\rangle \\
& A_{7}=a\left\langle\sin \theta_{1} \sin \phi_{1}\right\rangle
\end{aligned}
$$

Some implications of the angular distribution coefficients $\mathrm{A}_{0}-\mathrm{A}_{7}$

$$
\begin{aligned}
& A_{0}=\left\langle\sin ^{2} \theta_{1}\right\rangle \\
& A_{1}=\frac{1}{2}\left\langle\sin 2 \theta_{1} \cos \phi_{1}\right\rangle \\
& A_{2}=\left\langle\sin ^{2} \theta_{1} \cos 2 \phi_{1}\right\rangle \\
& A_{3}=a\left\langle\sin \theta_{1} \cos \phi_{1}\right\rangle \\
& A_{4}=a\left\langle\cos \theta_{1}\right\rangle \\
& A_{5}=\frac{1}{2}\left\langle\sin ^{2} \theta_{1} \sin 2 \phi_{1}\right\rangle \\
& A_{6}=\frac{1}{2}\left\langle\sin 2 \theta_{1} \sin \phi_{1}\right\rangle \\
& A_{7}=a\left\langle\sin \theta_{1} \sin \phi_{1}\right\rangle
\end{aligned}
$$

- Lam-Tung relation $\left(A_{0}=A_{2}\right)$
is satisfied when $\phi_{1}=0$
- Forward-backward asymmetry, a, is reduced by a factor of $\left\langle\cos \theta_{1}\right\rangle$ for A_{4}
- A_{5}, A_{6}, A_{7} are odd function of ϕ_{1} and must vanish from symmetry consideration
- Some equality and inequality relations among $A_{0}-A_{7}$ can be obatined

Some implications of the angular distribution coefficients $A_{0}-A_{7}$

$$
\begin{aligned}
& A_{0}=\left\langle\sin ^{2} \theta_{1}\right\rangle \\
& A_{1}=\frac{1}{2}\left\langle\sin 2 \theta_{1} \cos \phi_{1}\right\rangle \\
& A_{2}=\left\langle\sin ^{2} \theta_{1} \cos 2 \phi_{1}\right\rangle \\
& A_{3}=a\left\langle\sin \theta_{1} \cos \phi_{1}\right\rangle \\
& A_{4}=a\left\langle\cos \theta_{1}\right\rangle \\
& A_{5}=\frac{1}{2}\left\langle\sin ^{2} \theta_{1} \sin 2 \phi_{1}\right\rangle \\
& A_{6}=\frac{1}{2}\left\langle\sin 2 \theta_{1} \sin \phi_{1}\right\rangle \\
& A_{7}=a\left\langle\sin \theta_{1} \sin \phi_{1}\right\rangle
\end{aligned}
$$

Some bounds on the coefficients can be obtained

$$
\begin{aligned}
& 0<A_{0}<1 \\
& -1 / 2<A_{1}<1 / 2 \\
& -1<A_{2}<1 \\
& -a<A_{3}<a \\
& -a<A_{4}<a
\end{aligned}
$$

What are the values of θ_{1} and ϕ_{1} at order α_{s} ?

What are the values of θ_{1} and ϕ_{1} at order α_{s} ?

Compare with CMS data on λ

(Z production in $p+p$ collision at 8 TeV)

$$
\begin{aligned}
& \lambda=\frac{2 Q^{2}-q_{T}^{2}}{2 Q^{2}+3 q_{T}^{2}} \text { for } q \bar{q} \rightarrow Z g \\
& \lambda=\frac{2 Q^{2}-5 q_{T}^{2}}{2 Q^{2}+15 q_{T}^{2}} \text { for } q G \rightarrow Z q
\end{aligned}
$$

For both processes
$\lambda=1$ at $q_{T}=0 \quad\left(\theta_{1}=0^{\circ}\right)$
$\lambda=-1 / 3$ at $q_{T}=\infty\left(\theta_{1}=90^{\circ}\right)$
Data can be well described with a mixture of $58.5 \% ~ q G$ and $41.5 \% q \bar{q}$ processes

Compare with CMS data on v

(Z production in $p+p$ collision at 8 TeV)

Solid curve corresponds to
$\left\langle\sin ^{2} \theta_{1} \cos 2 \phi_{1}\right\rangle /\left\langle\sin ^{2} \theta_{1}\right\rangle=0.77$
$q-\bar{q}$ axis is non-coplanar relative to the hadron plane

Origins of the non-coplanarity

1) Processes at order α_{s}^{2} or higher

2) Intrinsic k_{T} from interacting partons
(Boer-Mulders functions in the beam and target hadrons)

Compare with CMS data on Lam-Tung relation

Solid curves correspond to a mixture of $58.5 \% q G$ and 41.5\% $q \bar{q}$ processes, and $\left\langle\sin ^{2} \theta_{1} \cos 2 \phi_{1}\right\rangle /\left\langle\sin ^{2} \theta_{1}\right\rangle=0.77$

Violation of Lam-Tung relation is well described

Compare with CDF data

 (Z production in $p+\bar{p}$ collision at 1.96 TeV)

Solid curves correspond to a mixture of $27.5 \% q G$ and $72.5 \% q \bar{q}$ processes, and $\left\langle\sin ^{2} \theta_{1} \cos 2 \phi_{1}\right\rangle /\left\langle\sin ^{2} \theta_{1}\right\rangle=0.85$

Violation of Lam-Tung relation is not ruled out

Compare with CMS data on $\mathrm{A}_{1}, \mathrm{~A}_{3}$ and A_{4}

W.C. Chang, R.E. McClellan, J.C. Peng, O. Teryaev

Phys. Rev. D 96, 054020 (2017)

Future prospects

- Extend this study to W-boson production
- Preliminary results show that the data can be well described
- Extend this study to fixed-target Drell-Yan data
- Extraction of Boer-Mulders functions must take into account the QCD effects
- Extend this study to dihadron production in $\mathrm{e}^{-} \mathrm{e}^{+}$collision (inverse of the Drell-Yan)
- Analogous angular distribution coefficients and analogous Lam-Tung relation

Future prospects

- Extend this study to semi-inclusive DIS at high p_{T} (involving two hadrons and two leptons) - Relevant for EIC measurements
- Rotational invariance, equality, and inequality relations formed by various angular distribution coefficients
- See preprint with D. Boer, arXiv: 1808.04398
- Comparison with pQCD calculations
- Preprint under preparation
- Lambertson and Vogelsang, PRD 93 (2016) 114013

Summary

- The lepton angular distribution coefficients $A_{0}-A_{7}$ are described in terms of the polar and azimuthal angles of the $q-\bar{q}$ axis.
- The striking q_{T} dependence of A_{0} (or equivalently, λ) can be well described by the mis-alignment of the $q-\bar{q}$ axis and the Collins-Soper z-axis.
- Violation of the Lam-Tung relation $\left(A_{0} \neq A_{2}\right)$ is described by the non-coplanarity of the $q-\bar{q}$ axis and the hadron plane. This can come from order α_{S}^{2} or higher processes or from intrinsic k_{T}.
- This study can be extended to fixed-target DrellYan data.

[^0]: "Talk given at the Drell Fest, July 31, 199s, SLAC on the cocesion of Prof. Sid Drell's retirement.

