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I
Context and

Classical Theory
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Question

Understand holography from the perspective of

non-perturbative models of Quantum Gravity

in models that

• are mathematically under control

• provide a clear picture of quantum geometry

• have exact realization of a quantum version of diffeo symmetry

In particular, clarify origin and dynamics of quantum boundary dofs
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Set-up

To begin with, we consider 

Euclidean 3d Quantum Gravity with Ʌ = 0

With focus on

• extended boundaries at a finite distance

• with Gibbons-Hawking-York (GHY) type boundary conditions

(i.e. fixed induced metric)
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Results

3d gravity is topological: boundary theory from ‘would-be-gauge’ dofs

nonperturbative boundary theories in terms of spin-chains;

in this context we ‘rediscover’ dualities in statistical mechanics

and integrable systems from a natural gravitational perspective

For appropriate semiclassical boundary conditions,

we recover results of perturbative gravity (1-loop partition function)

and reconstruct bulk geometry from  boundary sigma model
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Action principle /1

Einstein-Hilbert

Local symmetries (diffeos)

E.o.m.
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3D Gravity [Ʌ = 0]

No local dofs



Action principle /2

Einstein-Cartan (1st order)

Local symmetries (diffeos + Lorentz + shift               )

E.o.m.
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3D Gravity [Ʌ = 0]

Lorentz
symmetry

triad
shift symmetry

conjugate variables



Action principle /2

Einstein-Cartan (1st order)

Internal symmetries ( Lorentz             + shift                )

organize into the Poisson-Lie group structure

[Admits more subtle generalizations to Ʌ ≠ 0 ]
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3D Gravity [Ʌ = 0]

conjugate variables

conjugate symmetries
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3D Gravity: bulk topological dofs

Topological dofs

However, non-trivial topology unfreezes global dofs

E.g. holonomies around non-trivial cycles in the bulk



Boundary dofs

Bdry cond. generically break bulk gauge symmetries and diffeo invariance

new dofs to restore these symmetries

these are bdry ‘would-be-gauge’ dofs (prototypical ex is WZW)

Here, shift symmetry explicitly broken,

GHY boundary conditions break diffeomorphism invariance

E.g. Carlip: « dual Liouville = ‘would-be-gauge’ dof

from diffeo normal to boundary »

[Another perspective: bdry dofs are needed for covariantly gluing back regions along hypersurfaces]
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3D Gravity: boundary dofs

[see e.g. Brawn & Henneaux 1986, Carlip 1995 + 2005, Balachandran Et Al 1996, Freidel & Donnelly 2016, Gomes & AR 2017]



Boundary dofs

Bdry cond. generically break bulk gauge symmetries and diffeo invariance

new dofs to restore these symmetries

these are bdry ‘would-be-gauge’ dofs (prototypical ex is WZW)

Here, depending on presentation, 

either shift or Lorentz symmetry is explicitly broken

dual descriptions

E.g. shift reproduces Carlip’s

« dual Liouville = ‘would-be-gauge’ dof from diffeo normal to bdry »

[Another perspective: bdry dofs are needed for covariantly gluing back regions along hypersurfaces]
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3D Gravity: boundary dofs

[see e.g. Brawn & Henneaux 1986, Carlip 1995 + 2005, Balachandran Et Al 1996, Freidel & Donnelly 2016, Gomes & AR 2017]



II
Non-perturbative

3D quantum gravity
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1. Discretization and smeared variables 

2. Action of (discrete) symmetries

3. Amplitude kernel (for 3-ball and solid-torus topologies)

4. Quantum amplitude for arbitrary quantum bdry conditions (“bdry state”)

5. Bdry state encoding quantum GHY bdry conditions (fixed bdry metric)

 Part III:  Holography -- map 3d QG amplitude on a dual 2d model

13

Roadmap



3d QG can be exactly quantized in non-perturbative covariant fashion: 

Ponzano-Regge-Turaev-Viro model  [Euclidean, Ʌ = 0]

[equivalent to CS combinatorial quantiz.; cf. Kitaev models for topological phases of 2+1d matter]

Model based on a discretization, 

thanks to topological invariance the discretization is inconsequential

– in the bulk
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1. Discretization and smeared variables

PR-TV MODEL – a very partial list of references:
Ponzano & Regge 1968, Turaev & Viro 1992, Perez & Noui 2003, Freidel & Louapre 2004, 
Barrett & Naish-Guzmann 2009, Meusburger & Noui 2010,  Bonzom & Smerlak 2011-12



Ponzano-Regge-Turaev-Viro model  [Euclidean, Ʌ = 0]

Discretization
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2. Symmetries

Connection variables

Metric variables

Lorentz symmetry

Shift symmetry



Ponzano-Regge-Turaev-Viro model  [Euclidean, Ʌ = 0]

Discretization
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2. Symmetries

Connection variables

Metric variables

Lorentz symmetry

‘Active diffeo’ = vertex displacement

Length: discrete spectrum



Closed manifold

Einstein-Cartan QG gravity

Introduce a discretization of the manifold completely capturing its topology

To switch to “metric” variables, use Peter-Weyl thm + SU(2) recoupling theory
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3. Amplitude kernel

A theory of
Flat connections

The j’s are 
eigenvalues of

length operator

For large spin, it reproduces 
discrete Einstein-Hilbert



Manifold with boundaries

Start by fixing values of a variable on the boundary, e.g.

(Choice of connection-variable polarization)

basis for amplitudes of arbitrary superpositions of            weighted  by     :

Note:       is called a boundary state, 

it can impose any (quantum) boundary conditions, even metric ones

4. Quantum amplitude
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Three ball

No non-trivial holonomies, 

flatness + gauge invariance       all

4. Quantum amplitude
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Three ball

No non-trivial holonomies, 

flatness + gauge invariance       all

Solid torus

One residual holonomy,

flatness + gauge invariance       all             , except across a “dual” ring

4. Quantum amplitude
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Three ball

No non-trivial holonomies, 

flatness + gauge invariance       all

Solid torus

One residual holonomy,

flatness + gauge invariance       all             , except across a “dual” ring

4. Quantum amplitude
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GHY – i.e. metric – boundary conditions

We need to keep the spins        fix

Hence

Intertwiners are unique for 3-valent graphs (triangulations): Clebsch-Gordan

5. Boundary state for
Gibbons-Hawking-York boundary conditions

Wigner matrices
irrep of spin j

magnetic numbers m, m’
[ non-Abelian analogues of          ]

(Gauge-)invariant tensors
at vertices of the boundary graph:

intertwiners
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Amplitude (for the torus)

5. Boundary state for
Gibbons-Hawking-York boundary conditions

Residual effect of 
non-trivial topological cycles
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III
Holography

--
map 3d QG amplitude to dual 2d moels
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Amplitude

Boundary state for GHY bdry conditions

Residual effect of 
a non-trivial topological cycle

(solid torus)
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Amplitude

Boundary state for GHY bdry conditions

Forget for the moment
Magnetic indices

are edge variables
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discretized boundary

and its dual 

box = sum over
magnetic indices



Amplitude

This is a peculiar statistical model where

magnetic indices = dofs at edges

(complex) Boltzmann weights of a vertex model

Boundary state for GHY bdry conditions
- statistical model representation
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box = sum over

bdry dofs



Amplitude

This is a peculiar statistical model where

magnetic indices = dofs at edges

(complex) Boltzmann weights of a vertex model

Transfer matrix picture

[spin-chain]

Boundary state for GHY bdry conditions
- statistical model representation
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Amplitude

This is a peculiar statistical model where

magnetic indices = dofs at edges

(complex) Boltzmann weights of a vertex model

Boundary state for GHY bdry conditions
- statistical model representation
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end of bulk W-lines:
would-be gauge

bdry dofs bdry background
fixed by bdry state



From magnetic indices to group elements

Using a different basis of intertwiners (coherent LS intertwiners)…

…it is possible to trade sum over magnetic indices 

for integrals over SU(2) variables living at vertices

Lorentz ‘would-be-gauge’ dofs

over a background provided by the bdry state

(local Lorentz frame at boundary become dynamical)

This gives a formulation in terms of a sigma-model similar in spirit to WZW

Boundary state for GHY bdry conditions
- discrete sigma model representation

30



Solid torus topology

In the spin chain it corresponds to the insertion of a

projector on the total spin zero sector

Transfer matrix representation: 

RMK

if all bdry spins are j = ½, then the bdry model is the XXX spin-chain (integrable)

Boundary state for GHY bdry conditions
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Question:

what does the model look like in the spin/metric representation ?

Idea, instead of solving for face delta-functions, 

‘Fourier’ transform them and use SU(2) recoupling 

Result:    IRF model of the RSOS type modeling surface growth

dofs are given by spin of edges normal to boundary

 quantum version of Carlip’s ‘would-be-normal-diffeos’

For 3-valent boundary graphs: PR model on minimal bulk triangulation (one internal vertex)

Boundary state for GHY bdry conditions
- duality with RSOS model
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[Pasquier 1990, Witten 1990]



Duality structure
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canonical
phase space

Poisson-Lie
symmetry



Geometrical meaning of the boundary variables
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Embedding on the boundary into the bulk

fixed by…

…local orientation on the boundary into the bulk

or

…distance from the “center” of the spacetime

These are the variables “summed” over in the amplitude:

extrinsic shape of surface is conjugated to intrinsic metric (GHY)



IV
From semiclassical coherent states

to BMS3 characters
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Thermal

Solid torus topology,

Euclidean periodic time Δt = β

Twisted

Before identification, 

turn by an angle γ

Partition function

Corresponds to the Ʌ      0 limit of thermal AdS3 partition function 

& BMS3 characters correspond to Ʌ      0 limit of Virasoro chararacters

Partition function of 3d gravity
on twisted thermal Minkowski

36[Maloney & Witten 2007, Giombi, Maloney & Yin  2008, Barnich Et Al 2014, Oblak 2015]



Partition function of 3d gravity
on twisted thermal Minkowski
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Classical action 
(GHY term only)

1-loop
corrections

0-modes of 
supertranslation

(“boundary vacuum energy”)

Effect of (super)rotations
on modes of 

momentum p

bulk/gravity

boundary/ 
BMS3

character

Result

Formally:

[Maloney & Witten 2007, Giombi, Maloney & Yin  2008, Barnich Et Al 2014, Oblak 2015]



Result

Formally:

Partition function of 3d gravity
on twisted thermal Minkowski
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Classical action 
(GHY term only)

1-loop
corrections

0-modes of 
supertranslation

(“boundary vacuum energy”)

Effect of (super)rotations
on modes of 

momentum p

bulk/gravity

boundary/ 
BMS3

character

[Maloney & Witten 2007, Giombi, Maloney & Yin  2008, Barnich Et Al 2014, Oblak 2015]



Linearized quantum Regge calculus

Regge calculus (RC) = simplicial version of metric gravity 

bulk edges are discrete metric variables

Quantum linearized RC is triangulation invariant         diffeo invariant

“1-loop” partition function on a finite discretized twisted solid torus:

Partition function of 3d gravity
on twisted thermal Minkowski

39[Bonzom & Dittrich 2015]



Result

WKB evaluation of the amplitude
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Result

WKB evaluation of the amplitude
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“Windings”



Result

WKB evaluation of the amplitude
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“Windings”Classical action



Result

WKB evaluation of the amplitude
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Twist dependence

p = 0 correspond to a global sym
p = n ‘killed’ by measure over ϕ

“Windings”Classical action



Result

WKB evaluation of the amplitude
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Twist dependence

p = 0 correspond to a global sym
p = n ‘killed’ by measure over ϕ

“Windings”

Overwhelmingly 
dominated by

n=1 and n=(Nx-1)/2

killed by minimal knowledge of
extrinsic curvature

Classical action



Classical action

Result

WKB evaluation of the amplitude
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“Windings”

Overwhelmingly 
dominated by

n = 1

Twist dependence

p = 0 correspond to a global sym
p = 2 ‘killed’ by measure over ϕ



Result

At large spins, states encoding a classical flat intrinsic boundary geometry,

induce a bdry theory that reproduces extrinsic torus geometry

have an amplitude that reproduces the expected continuum result

for irrational twists, corresponding to truncated BMS3 character

always finite result, even at rational “poles”

produce corrections for small and quantum boundaries 

First time such an explicit check over extended boundary states is performed

Result
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Conclusions
&

Outlook
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On the boundary of 3d QG

Boundary states of non-perturbative 3d QG are very rich objects

Impose quantum bdry conditions – here we explored only one class of them

Their dynamical evaluation (amplitude), interpreted as boundary field theories

Boundary dofs

magnetic indices reference frame orientation [Gv]

dofs come from SU(2)-gauge sym at bdry [‘would-be-gauge’ dofs]

or, dually: 

radial spins        quantum version of ‘would-be-normal-diffeos’

Conclusions
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Phase transitions

What is the geometrical significance 

of a phase transition of the boundary theroy?

Relations to boundary continuum limit / discretization invariance?

Symmetries of the boundary theories

Can we have a more concrete grasp on the emergence of BMS3 – or Virasoro?

In particular, how can it be understood directly as a 

symmetry of the boundary theory?

Outlook
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Other observables? 

E.g. in spin chain: Correlations from coupling to bulk Wilson lines?

(A)dS?

We know that curved geometries correspond to q-deformed spin-networks

Extend our result to those cases? [E.g. full 6v models, with phases transitions?] 

Holographic RG? Liouville bdry theory? 

Outlook
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Thank you
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GHY b.c. on a square lattice

Let’s start from topologically trivial case

and 4-valent graph, with all spins j = 1/2

At each vertex, the intertwiner space is two dimensional

=     σ +        ρ

Spins ½ and the XXX chain

J = 1 J = 0

52
[Kaufmann 1983,  Pasquier 1990, Witten 1990, Turaev 1992, AR Et Al 2017]

intertwiner

spin 1/2



GHY b.c. on a square lattice

Let’s start from topologically trivial case

and 4-valent graph, with all spins j = 1/2

A more enlightening basis is, however, the following

Spins ½ and the XXX chain

53
[Kaufmann 1983,  Pasquier 1990, Witten 1990, Turaev 1992, AR Et Al 2017]

intertwiner

spin 1/2



6-vertex model (ice-type model)

Matches the gravitational amplitude if

or

Spins ½ and the XXX chain

54

6v lattice 90° rot
≡

u vs t channel basis

[Kaufmann 1983,  Pasquier 1990, Witten 1990, Turaev 1992,  AR Et Al 2017]



6-vertex model (ice-type model)

Matches the gravitational amplitude if

or

Spins ½ and the XXX chain

55
[Kaufmann 1983,  Pasquier 1990, Witten 1990, Turaev 1992,  AR Et Al 2017]

6v lattice 90° rot
≡

u vs t channel basis



Spin chains

The 6v model is an integrable system related to 

the XXZ Heisenberg spin chain 

with trivial anisotropy Δ

Thus, exact correspondence between GHY boundary states at spin 1/2 

and an integrable statistical model, the XXX spin chain

Spins ½ and the XXX chain

56

SU(2) theory
[Ʌ = 0]

Spin 1/2 
boundary states



Spin 0 in u and t recoupling channel

These intertwiners produce other integrable models (IRF, RSOS type)

Unfortunately, they have a very degenerate geometrical interpretation

From Witten’s weaves 
to fuzzy parallelograms
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= +    α

Zero-length 
diagonal!

Consecutive sides
strictly antiparallel

u=0 t=0

[Kaufmann 1983, Pasquier 1990, Witten 1990, Turaev 1992, AR Et Al 2017]



Spin 0 in s recoupling channel

More sensible, but still no definite shape!

From Witten’s weaves 
to fuzzy parallelograms
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=     
S=0

[Witten 1990]

Opposite sides
perfectly correlated

Angle completely
uncertain

?

Heisenberg 
uncertainty

principle



Unfreeze the spins

What if we relax strict GHY conditions and superpose different spins?

Non-trivial topology

How is a non-trivial topology encoded in these statistical models?

Fuzzy parallelograms

Can one build coherent (i.e. “not-too-fuzzy”) parallelograms?

Questions
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Spin-network generating functions

It turns out that considering superpositions of all spins and intertwiners,

one can build states dual to the Ising model

These states are actually generating functions for all spin networks states

The duality is through a SUSY,

it transforms group averaging at vertices 

into Grassmannian spinors whose pairings give Ising’s loop expansion

The intertwiners’s inner structure gives

Ising’s coupling constants        criticality = specific intrinsic geometries

Ising model
from spin-network superpositions

60[Dittrich & Hnybida 2013 , Bonzom, Costantino & Livine 2015]



p ≥ 2

1-loop 3d EH: ghosts “eat” p = 0, 1

Regge calculus: modes with p = 0, 1  correspond to discrete diffeos

BMS3 character : p = 0, 1 special because of Schwarzian derivative

Rational vs. irrational γ

In the continuum, poles at rational twists, i.e.

In the discrete, and “irrational” means 

Dependence on γ

61
[Maloney & Witten 2007, Giombi, Maloney & Yin  2008, 
Barnich Et Al 2014, Oblak 2015, Bonzom & Dittrich 2015]



Result

is divergent for ‘rational’ twist, i.e. iff

and

This is an artifact of the approximation, though:

if GCD > 1 then the stationary points are not isolated,

and the Hessian is degenerate

Divergences = breakdown of simple stationary phase method

Rational vs. irrational twist 
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Non-perturbative 3d QG

63

Design boundary state

Coherent state techniques 

to build states encoding flat rectangular plaquettes

where: spin jl = length of the l-th side

spinor = its direction

bdry dofs = magnetic indices       group variable [rotation invariance]

Evaluate its amplitude

[Livine & Speziale 2007, Barrett Et Al 2008, Freidel & Krasnov 2008,  
Dowdall , Hellmann & Gomes 2010, AR Et Al. 2015, AR Et. Al. 2017]



Design boundary state

Coherent state techniques 

to build states encoding flat rectangular plaquettes

where: spin jl = length of the l-th side

spinor = its direction

bdry dofs = magnetic indices       group variable [rotation invariance]

Evaluate its amplitude

Non-perturbative 3d QG
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Spins:
size of the plaquette



Design boundary state

Coherent state techniques 

to build states encoding flat rectangular plaquettes

where: spin jl = length of the l-th side

spinor = its direction

bdry dofs = magnetic indices       group variable [rotation invariance]

Evaluate its amplitude

Non-perturbative 3d QG
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Spinors:
rectangle in the x-z plane



Design boundary state

Coherent state techniques 

to build states encoding flat rectangular plaquettes

where: spin jl = length of the l-th side

spinor = its direction

bdry dofs = magnetic indices       group variable [rotation invariance]

Evaluate its amplitude

Non-perturbative 3d QG
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3d orientation of plaquettes
(extrinsic curvature)



Design boundary state

Coherent state techniques 

to build states encoding flat rectangular plaquettes

where: spin jl = length of the l-th side

spinor = its direction

bdry dofs = magnetic indices       group variable [rotation invariance]

Amplitude

Non-perturbative 3d QG
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Bulk monodromy,
non-local insertion

Bulk monodromy measure



Non-perturbative 3d QG
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Design boundary state

Coherent state techniques 

to build states encoding flat rectangular plaquettes

where: spin jl = length of the l-th side

spinor = its direction

bdry dofs = magnetic indices       group variable [rotation invariance]

Evaluate its amplitude

[Wieland 2017]



Semiclassical limit

The semiclassical limit corresponds to uniform “large j” limit =  

apply stationary phase methods

Geometry from e.o.m.

Fix Gv to correspond to local embedding of the torus boundary in R3

Fix ϕ to be equal to the twist angle γ

The e.o.m. for ϕ fixes which cycle of the torus can carry extrinsic curvature

WKB evaluation of the amplitude

69[Livine & Speziale 2007, Barrett Et Al 2008, Freidel & Krasnov 2008,  
Dowdall , Hellmann & Gomes 2010, AR Et Al. 2015, AR Et. Al. 2017]


