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Simplicial path integral for guantum gravity

path integral for simplicial geometries associated to triangulation AA _ / DQA 6@‘ SA(ga)

dynamical variables should encode the geometry of lattices
action should correspond to the discretisation of some continuum gravity action

measure should encode some essential symmetries
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Simplicial path integral for guantum gravity

path integral for simplicial geometries associated to triangulation AA _ / DgA 67; SA(ga)

dynamical variables should encode the geometry of lattices
action should correspond to the discretisation of some continuum gravity action
measure should encode some essential symmetries

can be defined using group-theoretic ingredients Part 1
can be embedded in QFT formalism: Group Field Theory Part 2

define strategy/procedure for continuum limit via GFT renormalization Part 3



Discrete quantum gravity path integrals

In group-theoretic variables



Quantum triangle in 3d - classical phase space

see talks by A. Riello and B. Dittrich
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Phase space for triangle in discrete 3d gravity :
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5U(2) ~ RS part of classical phase space [T*SU(Q)] X3

group elements { gi} — discrete connection, encoding extrinsic geometry/curvature

Phase space for triangle in discrete 3d gravity :

discretised 3d gravity variables from continuum theory:  §(¢, w) = f Tr(e \ F(w))

triad Lie-algebra valued 1-form connection Lie algebra-valued 1-form ——>
— —> Lie algebra element group-valued parallel transport ——> group element

/e = b; € su(2) Pelin® = g; € SU(2)

see talks by A. Riello and B. Dittrich
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Quantum triangle in 3d - Hilbert space, representations
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e non-commutative Lie algebra (edge vector) representation: ”H;?U(z) = Lz (RB)

for given

quantisation map Jre*x gu = Q_l(Q(f*)Q(g*))

complete basis of non-commutative plane waves (691 * 692) (ZE) = €44 95 (:I:‘)
L. Freidel, E. Livine, '05; L. Freidel, S. Majid, '06; A. Baratin, D. Oriti, '10; C. Guedes, DO, M. Raasakka, ‘13

Hiriangte = Inv (®iH¢SU(2)> > YP(x1,T2,23) * 0 (1 + 22 + 3)
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for given
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Quantum triangle in 3d - Hilbert space, representations

SU(2)>

1

quantum triangle: Htriangle = Inv (@{H

e non-commutative Lie algebra (edge vector) representation: ”H;?U(z) = Lz (RB)

for given

quantisation map Jre*x gu = Q_l(Q(f*)Q(g*))

complete basis of non-commutative plane waves (691 * 692) (:E) = €44 95 (:I:‘)
L. Freidel, E. Livine, '05; L. Freidel, S. Majid, '06; A. Baratin, D. Oriti, '10; C. Guedes, DO, M. Raasakka, ‘13

Hiriangte = Inv (®iH¢SU(2)) > YP(x1,T2,23) * 0 (1 + 22 + 3)

e group (connection) representation: ’HEU(Z) — LQ(SU(Q))

(@1, T2, w3) % 0(21 + w2 + 23) = /[d9]3 /dh W(g1h, g2h, gsh) eg, (21)eg, (22)eg, (23)
. . . R SU((2) i
 spin representation (via Peter-Weyl decomposition): Hi — @jiEN/QH Z

w(g]J 927 93) — Z %f%gmy, 07%11]7’1?57%3 D?%;lnl (gl)‘Dgngng (92)D.;33n3 (93)
D— 3j-symbol - intertwiner
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Simplicial path integral for 3d quantum gravity

use simplicial complex A and its dual complex F , with assigned same group-theoretic variables
discretization of:  S(e,w) = [ Tr(e A F(w))

S(xe, hy) Z tr|xe H H, = H h; € SO(3)

ledf(e)

discrete non-commutative path integral -~ h,
(depending on quantisation map): Ap = / H [dhl] / H [dgilfe} e’ > . Trx.H]
[ e

can also be given in group variables (as lattice gauge theory) and spin variables (spin foam models ~ LQG)
see talks by A. Riello and B. Dittrich



4d simplicial geometry in group-theoretic data

classical tetrahedron in 4d: J. Barrett, L. Crane, '97; J. Baez, J. Barrett, '98; L. Freidel, K. Kransov, ‘07
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B! ~ N Ab/ N

similarly in Lorentzian context, based on Lorentz group SO(3,1)
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1

B! ~ NI Ab/ N

phase space before constraints:

[ T Spin(4)]** ~ [T*SU(2) x T*SU(Q)]X4J

quantisation: “BF tetrahedra” + constraints
HEF = oo (2, 17°0) HOW = 12 (s0(4)) = 12 (SO(4))

different strategies for imposing constraints - different resulting quantum theories

similarly in Lorentzian context, based on Lorentz group SO(3,1)
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classical tetrahedron in 4d: J. Barrett, L. Crane, '97; J. Baez, J. Barrett, '98; L. Freidel, K. Kransov, ‘07
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phase space before@onstraints)
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quantisation: “BF tetrahedra” +(constraints )

HEF = I'ny (®ZH50<4>) 13OW — 2 (50(4)) = L2 (SO(4))

1

different strategies for imposing constraints - different resulting quantum theories

similarly in Lorentzian context, based on Lorentz group SO(3,1)



Simplicial path integral for 4d quantum gravity

Plebanski-Holst action (topological BF theory+simplicity constraints)

Spies = % [, [B/\F(w) + Ly BAFW) + gbBAB]

S
= BANB = B ~
B € s0(3.1) 00 =0 = x BA 0 = *xe N\ e

connection : w € s0(3,1) curvature F(w) = d,w co — tetrad e’ (I =0,1,2,3)

discretize to get simplicial gravity action and path integral (as in 3d case)

several models in the literature (depending on imposition of geometric constraints)

one construction:
A. Baratin, D. Oriti, ‘11 (hon-commutative) simplicial gravity path integral

Ap = / [d° B[N, ]Dg " [heo] | | [e’i triBe He] o O N, p-n-1 (BBY)

To (1)
t

can also be expressed in group representation (as lattice gauge theory)
or "spin” representation (spin foam model ~ LQG)



Simplicial path integral for guantum gravity

path integral for simplicial geometries associated to triangulation

with group-theoretic ingredients '
Ap = /DQA et 9al9a)




Simplicial path integral for guantum gravity

path integral for simplicial geometries associated to triangulation

with group-theoretic ingredients ’
AA — /DQA ez SA(QA)

need to remove dependence on fixed triangulation and control arbitrary refined ones:

one strategy:

sum over triangulations weighted by simplicial gravity path integral

this defines full theory: candidate path integral of continuum quantum gravity

4 = Zw(A) A = Zw(A) /DgA et Salga) = /Dg e’ 3(9)
A

A



Simplicial path integral for guantum gravity

path integral for simplicial geometries associated to triangulation

with group-theoretic ingredients ’
AA — /DQA ez SA(QA)

need to remove dependence on fixed triangulation and control arbitrary refined ones:

one strategy:

sum over triangulations weighted by simplicial gravity path integral

this defines full theory: candidate path integral of continuum quantum gravity

4 = Zw(A) A = Zw(A) NGRS 2= /Dg e’ 3(9)
A

A

fixing all group theoretic data, eg to equilateral triangulations, gives
purely combinatorial construction ~ euclidean dynamical triangulations



Simplicial path integral for guantum gravity

this defines full theory: candidate path integral of continuum quantum gravity

7 = Zw(A) Apn = Zw(A) /DgA et 9a9a) = /Dg e!59)
A A

new questions:
* (in addition to: which discrete variables and amplitudes?)
- which triangulations? which topologies?
 which of them are dominant/suppressed in which regime?
« which combinatorial measure?
* how to control it? numerically? analytically?

* universality classes? which ingredients are really crucial?

defining/computing the sum = defining the continuum gravity path integral



The Group Field theory formulation

of discrete gravity path integrals



Group field theories

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin, ...... )

(QFT of spacetime, not defined on spacetime)

Quantum field theories over group manifold G (or corresponding Lie algebra) Q GXd — C

relevant classical phase space for “GFT quanta”: (T* G) xd ~ (g X G) xd

can reduce to subspaces in specific models

very general framework; interest rests on specific models (e.g. for QG models, G = Lorentz group, d = 4)



Group field theories

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin, ...... )

(QFT of spacetime, not defined on spacetime)

Quantum field theories over group manifold G (or corresponding Lie algebra) Q : GXd — C

relevant classical phase space for “GFT quanta”: (T* G) xd ~ (g X G) xd

can reduce to subspaces in specific models

very general framework; interest rests on specific models (e.g. for QG models, G = Lorentz group, d = 4)

FH) = @ Sym{( (1) g @ _@._.@Hqgv))}

boson statistics is -assumption-

Hy = L’ (Gd§ d,LLHaar)

E

@), ¢'@)] = 16(3.9)  [¢@). ¢@)] = [¢'(@). ¢'(@)] =0

additional conditions (e.g. symmetries) on fields » restrictions on Hilbert space



Group field theories

a QFT for the building blocks of (quantum) space

(d=4)

generic quantum state: arbitrary collection of spin network vertices (including glued ones) or
tetrahedra (including glued ones)

/ N
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a QFT for the building blocks of (quantum) space

Fock vacuum: “no-space” (“emptiest”) state |0 > (d=4)

generic quantum state: arbitrary collection of spin network vertices (including glued ones) or
tetrahedra (including glued ones)

/ N




Group field theories

a QFT for the building blocks of (quantum) space

Fock vacuum: “no-space” (“emptiest”) state |0 > (d=4)

single field “quantum” spin network vertex or tetrahedron (g1, 92,93, 94) < @(B1, Ba, B3, By) — C
(“building block of space”)

RN

generic quantum state: arbitrary collection of spin network vertices (including glued ones) or
tetrahedra (including glued ones)

/ N




Group field theories

a QFT for the building blocks of (quantum) space

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

1 A

S(0.9) = 5 [ lglelodKai)elo) + 7 [ giadplgn)olGip)V (g Gip) + e
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Group field theories

a QFT for the building blocks of (quantum) space

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

1 A

S(0.9) = 5 [ lglelodKai)elo) + 7 [ giadplgn)olGip)V (g Gip) + e

“combinatorial non-locality” /
in pairing of field arguments

specific combinatorics depends on model

simplest example (case d=4): simplicial setting

combinatorics of field arguments in interaction: gluing of 5 tetrahedra across common
triangles, to form 4-simplex (“building block of spacetime”)



Group field theories

a QFT for the building blocks of (quantum) space

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

S(0.9) = 5 [ WglelaK(aele) + o [dgilelgn)-p@p)V (giasgin) + e

2
“combinatorial non-locality” /
in pairing of field arguments

specific combinatorics depends on model

simplest example (case d=4): simplicial setting 2

12 3 4
L 2 ¢v




Group field theories

a QFT for the building blocks of (quantum) space

Feynman perturbative expansion around trivial vacuum
ANT

Z:/Dng@eiSA(%@ = Z Ar
r

sym(I')
Feynman diagrams (obtained by convoluting propagators with interaction kernels) =

= stranded diagrams dual to cellular complexes of arbitrary topology

(simplicial case: simplicial complexes obtained by gluing d-simplices)
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Feynman diagrams (obtained by convoluting propagators with interaction kernels) =
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(simplicial case: simplicial complexes obtained by gluing d-simplices)

Feynman amplitudes (model-dependent):

equivalently:
spin foam models (sum-over-histories of
spin networks ~ covariant LQG)
Reisenberger,Rovelli, ’00
lattice path integrals
(with group+Lie algebra variables)
A. Baratin, DO, ‘11




Group field theories

a QFT for the building blocks of (quantum) space

Feynman perturbative expansion around trivial vacuum
ANT

Z:/Dng@eiSA(%@ = Z Ar
r

sym(I")

Feynman diagrams (obtained by convoluting’ propagators with interaction kernels) =
= stranded diagrams dual to cellufar complexes of arbitrary topology

(simplicial case: simplicial compjexes obtained by gluing d-simplices)

Feynman amplitudes (model-dependent):

equivalently:
spin foam models (sum-over-histories of
spin networks ~ covariant LQG)
Reisenberger,Rovelli, ’00
lattice path integrals GFT as lattice quantum gravity:
(with group+Lie algebra variables)
A. Baratin, DO, ‘11 @ynamical triangulation9+@uantum Regge calculus)




S(p) = 9

Group field theory for 3d quantum gravity

p:SU((2)*% = C
1
/[dg]|g0|2(gl,g2,g3) T 4_!/[dg]SD(glaQZagS)90(93794795)90(95792796)90(96794791)+CC

for fields satisfying: (91, 92,93) = w(hg1, hg2,hgs)  Vh € SU(2)

FH) - @ Sym{( 1) g 4@ _@._..(g)H?(}V))}

Sp(glng, g3) N QO(Xl,.XQ,)@) H, = Htm’angle = Inv (®z%f(](2))

many-body quantum states = quantised triangles (glued to one another)



Group field theory for 3d quantum gravity

z /D@D@ o)

Feynman amplitudes in different representations:

see talks by A. Riello and B. Dittrich



Group field theory for 3d quantum gravity

z /D@D@ S (pp)
; sym(I")

Feynman amplitudes in different representations:

—>

Ar = /Hdhl 1;[ § (Hy(hy)) = /Hdhl 1;[ 5 (Hleafhl> —
- SHaII{f § 7}/ Tlon Tws e

{e} e T

see talks by A. Riello and B. Dittrich



Group field theory for 3d quantum gravity

z /DSDDw RPN (2012 R—

Feynman amplitudes in different representations:

Ar = /Hdh, ];[ 5 (Hr (b)) = /Hdhl 1;[ 5 (ﬁleafh,>

lattice gauge theory formulation
— gaug y

P - of 3d gravity/BF theory
— E | | d | | l_ 3_ :75_ } _ / | | dh | | d3xe ei o 1T xoHe
e { Ja J5 6 z [ l] , [ ]

{e} e T

see talks by A. Riello and B. Dittrich



Group field theory for 3d quantum gravity

z /D@D@ PR IN () R
EF: sym(T’)

Feynman amplitudes in different representations:

—>

Ar = /Hdhl 1;[ § (Hy(hy)) = /Hdhl 1;[ 5 (Hleafhl> —

lattice gauge theory formulation
— gaug y

P - of 3d gravity/BF theory
— E | | d | | l_ 3_ :75_ } _ / | | dh | | d3xe ei o 1T xoHe
e { Ja J5 6 z [ l] , [ ]

{e} e T

"

spin foam formulation of 3d gravity
see talks by A. Riello and B. Dittrich



Group field theory for 3d quantum gravity

EF: sym(I')

Feynman amplitudes in different representations:

N
= [MdLsmo = [T T (I ) -
l f ! f lattice gauge theory formulation

— ZHd H{ h i } _ /H[dhl] H[d3x ] J S Tr g, of 3d gravity/BF theory
Vel e | " ]Z ]g- ]g l ¢ e \
/'

spin foam formulation of 3d gravity discrete 1st order path integral for 3d gravity on
see talks by A. Riello and B. Dittrich simplicial complex dual to GFT Feynman diagram



Group field theory for 4d quantum gravity

starting from GFT model for 4d BF theory (here in Lie algebra/bivector variables, with simplicial interactions)

1 A
S[Qb] — §/dB/dN [¢(317327B37B43N)]*2+g/dB/dN [¢(B17327B3aB47N1)*¢(B47B57B6aB77N2)
*¢(B77337B87B9;N3>*¢(B97B67B27BIO;N4)*¢(BlO7B87B5aBl;N5)]

and adding “geometricity constraints” to the dynamics

1

EB{J e N’R* ~s0(4), N' e S* cTR* N;(«B/)) =0 ) Bl = OJ

Bl ~ NTAb/

one can define GFT models whose Feynman amplitudes are simplicial gravity path integrals, e.g.
A. Baratin, DO, ‘11

Ap = / @ B[N D5 g« [T [ 7 w6y s (8BY)
t

To(t)

equivalently re-written as lattice gauge theory or spin foam model



GFT and holography:
first contacts



GFTs and tensor models

(Ambjorn, Durhuus, Sasakura, ..., Gurau, Rivasseau, Bonzom, Ryan, ..... )

same combinatorics, no group-theoretic data
purely combinatorial amplitudes ~ lattice gravity path integrals on equilateral triangulations

dropping group/algebra data
example: d=3 (or restricting to finite group)

Tz’jk : ZXTB — C

. X3 #
90(91792793)'G — C Tijk;XXB%(C X =1.2

A
41/ N3

Z TijkalmejnTnli

1Jklmn

1
S(T) = 5 Z Lijedhji —

©,J,k

Quantum dynamics: i
J )\VF )\VF

7 = | DT e STN) = T — NEr—3Wr
/ ) zl;sym(F) : zl;sym(f‘)

can be recast in terms of Regge action for gravity discretised on equilateral triangulation

recently used also in the context of SYK model and AdS/CFT

Witten, Klebanov, Gurau, Rosenhaus, Verlinde, ......



Tensorial (G)FTs, SYK model and holography

Witten, Klebanov, Gurau, Rosenhaus, Verlinde, ......

@ Sachdev-Ye-Kitaev models = disordered systems of N Majorana fermions
[Sachdev, Ye, George, Parcollet '90s...; Kitaev '15, Maldacena, Stanford, Polchinski, Rosenhaus...]

. ol abe ahe 2 N 2 ~ L2
Hlnt ~ J111213I4 ¢/1 ¢:2¢/3¢/4 y <J111213I4> 07 <J,'1,'2i3i4> N3
many related models have been constructed (bosonic, supersymmetric, different dimension, etc)

@ Many interesting properties:

e solvable at large N
e emergent conformal symmetry at strong coupling
e maximal quantum chaos

e holography in low dimension: " NAdS, /NCFT1”

@ Same melonic large N limit as tensor models [Witten '16]

A SYK-like quantum-mechanical models: \

e same qualitative properties at large N and strong coupling;

e no disorder.

New class of QFTs with solvable large N limits. tensorial (G)FT models that

_>
\ capture the same physich

[Gurau, Bonzom, Rivasseau,... 10s; Tanasa, SC '15] [Klebanov, Tarnopolsky '16...]




GFT states as generalised tensor networks

Quantum states in many-body systems conveniently encoded in tensor networks  Vidal, ‘06

= tensors contracted by link maps, associated to graph

) = X) (M| Q) [T

<1y >

Efficient encoding of entanglement properties
Saturate entropy bounds (RTN, in large bond limit)
Holographic features (use in AdS/CFT, ....)

Swingle, ’09; van Raamsdonk ’09; ......; Hayden et al

Chirco, DO, Zhang, ‘17

1\1 auxiliary
o bond
\ = \ indices
: / T [ 3
11 i ’2:3 T2/ j‘i'
e.g. Ryu-Takanayagi entropy formula
S Area(v4)
A p—
'16 4G N N
' Ryu-Takanayagi, ’12; SA
Miyaji-Takayanagi ’15 '
Mad+2 2=JAU2B
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Quantum states in many-body systems conveniently encoded in tensor networks  Vidal, ‘06

= tensors contracted by link maps, associated to graph

) = X) (M| Q) [T

<1y >

Efficient encoding of entanglement properties
Saturate entropy bounds (RTN, in large bond limit)
Holographic features (use in AdS/CFT, ....)

Swingle, ’09; van Raamsdonk ’09; ......; Hayden et al

Spin networks (for fixed and equal spins) are a special
case of tensor networks (with local gauge symmetry)

Chirco, DO, Zhang, ‘17

1\1 auxiliary
o bond
\ = \ indices
: / T [ 3
11 i ’2:3 T2/ j‘i'
e.g. Ryu-Takanayagi entropy formula
S Area(v4)
A p—
'16 4G N N
' Ryu-Takanayagi, ’12; SA
Miyaji-Takayanagi ’15 '
Mad+2 2=JAU2B




GFT states as generalised tensor networks

Quantum states in many-body systems conveniently encoded in tensor networks  Vidal, ‘06

Chirco, DO, Zhang, ‘17

= tensors contracted by link maps, associated to graph Tl auxiliary
i bond
= \ indices
=R m|®|T 2 L
<1j> 11 i is T2 7:
!
Efficient encoding of entanglement properties _
Saturate entropy bounds (RTN, in large bond limit) 9 Ryu—Takana;zlgl e(ntro)py formula
rea
Holographic features (use in AdS/CFT, ....) Sq = e 4 Ss
Swingle, ’09; van Raamsdonk ’09; ......; Hayden et al. ’16 Ryu Takanayf;]gi 1o- ‘
A e 2A
Miyaji-Tak i’15
Spin networks (for fixed and equal spins) are a special yalriarayanad! '
case of tensor networks (with local gauge symmetry) Muss S oSAUSE
Group field theory states are a field-theoretic generalization
of random tensor networks - GFT dynamics defines _
probability measure ‘(I)N> o @if M£| ® W" < %{H@
le le

. |
—dV <=> 0
Z (90) \ .




Towards Ryu-Takanayagi formula in full QG

Hayden et al. ‘16 Chirco, DO, Zhang, ‘17

(large) open spin network GFT state (written as random tensor network)

Dp) = X) Me’@’ﬁbn c X M

LeN LEON

corresponding density operator :

reduced density operator associated to boundary sub-region A

pa = trp|p]/tr[p]




Towards

(large) open spin network GFT state (written as random tensor network)

Dp) = X) Me’@’ﬁbn c X M

LEON

Ryu-Takanayagi formula in full QG

LeN

corresponding density operator

reduced density operator associated to boundary sub-region A

el

p = try |:®ME M€‘®‘¢v va

pa = trp|p]/tr[p]

Hayden et al. ‘16

Goal: entanglement entropy between sub-regions A and B

Chirco, DO, Zhang, ‘17



Towards Ryu-Takanayagi formula in full QG

Hayden et al. ‘16 Chirco, DO, Zhang, ‘17

(large) open spin network GFT state (written as random tensor network)
D) = X) M€’®’¢n c X He
LeN LEON

corresponding density operator !

—tI'g |:®ME M€‘®‘¢v va ::

Ler \

reduced density operator associated to boundary sub-region A

pa = trp|p]/tr[p]

Goal: entanglement entropy between sub-regions A and B

1

" " . ~N
Sep = —tr[palog pa] = ]1[1211 Sn(A) = 1 _ N log tr|pal| from Reny entropy (via replica trick)

computation made easier by: e ON(A) — tr[p%]/(tr[p])N = Z4/Z
- random character: calculate expectation value

* large bond approx.: fluctuations are suppressed



Towards Ryu-Takanayagi formula in full QG

- state written in GFT language as random tensor network
- density operator associated with GFT observable (N-point function)

- expectation value computed via path integral of chosen GFT model

(chosen probability measure)

E [f(6,3)] = [ (D)D) fls, 3] 5197

E(p; )

= E[(|¢0){¢n)"] = E ( [ T ds.de., ¢n<ga>¢n<gfa>ga><g'a|>

Hayden et al. ‘16 Chirco, DO, Zhang, ‘17

Freidel, Gurau, DO '09, Bonzom, Smerlak ’10-’12
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Towards

Ryu-Takanayagi formula in full QG

Hayden et al. ‘16

- state written in GFT language as random tensor network
- density operator associated with GFT observable (N-point function)

- expectation value computed via path integral of chosen GFT model

(chosen probability measure)

E [f(6,3)] = [ (D)D) fls, 3] 5197

K

E(p, ) = E[(|¢n){dn)"]

[ T dgude’, én(g)0n (&) lea) &'

Chirco, DO, Zhang, ‘17

consider simple GFT model for topological BF theory in perturbative expansion around trivial gaussian measure

— —> entropy from evaluation of sum over lattice BF amplitudes (on “bulk lattices”)
Freidel, Gurau, DO '09, Bonzom, Smerlak ’10-’12

- result dominated by most divergent ones



Towards Ryu-Takanayagi formula in full QG

Hayden et al. ‘16 Chirco, DO, Zhang, ‘17

- state written in GFT language as random tensor network
- density operator associated with GFT observable (N-point function)

- expectation value computed via path integral of chosen GFT model

(chosen probability measure)

E [f(6,3)] = [ (D)D) fls, 3] 5197

E(p; )

— E[(6,)(6n)V] = E / [T dgade’s 6u(ga)on(@)lga) (&'

consider simple GFT model for topological BF theory in perturbative expansion around trivial gaussian measure
— —> entropy from evaluation of sum over lattice BF amplitudes (on “bulk lattices”)

- result dominated by most divergent ones

result: SeE = min(#eo, ;) Ind(1)

Freidel, Gurau, DO '09, Bonzom, Smerlak ’10-’12

entropy proportional to area of minimal bulk surface
(Ryu-Takanayagi-like formula)



Towards Ryu-Takanayagi formula in full QG

Hayden et al. ‘16 Chirco, DO, Zhang, ‘17

- state written in GFT language as random tensor network

- density operator associated with GFT observable (N-point function)

- expectation value computed via path integral of chosen GFT model
(chosen probability measure)

E [f(6,3)] = [ (D)D) fls, 3] 5197

E(pY) = E[(|én) ()] = E / TT deadg’s 6n(ga)on (@) |2a) €

consider simple GFT model for topological BF theory in perturbative expansion around trivial gaussian measure

— —> entropy from evaluation of sum over lattice BF amplitudes (on “bulk lattices”)
- result dominated by most divergent ones Freidel, Gurau, DO ’09, Bonzom, Smerlak *10-’12

entropy proportional to area of minimal bulk surface
result: SpE = miﬂ(#eeaAB) In 5(]1) (Ryu-Takanayagi-like formula)
can compute non-perturbative QG corrections.....




Continuum limit
of discrete quantum gravity

via (functional) GFT renormalization



Simplicial path integral for guantum gravity

defining full simplicial path integral for quantum gravity = defining full GFT path integral for suitable model



Simplicial path integral for guantum gravity

ANT

z = / DpDp el NP = N

sym(I’

— Zw /Dg et oa(ga) = /Dg et 5(9)
A

defining full simplicial path integral for quantum gravity = defining full GFT path integral for suitable model

diffeomorphism invariance by full
summation over discretizations

final non-local continuum theory (not
using “local fundamental blocks”) built
from local “fundamental” blocks




Simplicial path integral for guantum gravity

ANT

_ _ Z .AF
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defining full simplicial path integral for quantum gravity = defining full GFT path integral for suitable model
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issues: diffeomorphism invariance by full

summation over discretizations

- which GFT model?
final non-local continuum theory (not

- restrictions on triangulations generated as FD? using “local fundamental blocks”) built
from local “fundamental” blocks

* how to control it?

- fixed points, continuum phases and phase transitions?

- universality classes? which ingredients are really crucial?
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* how to control it?

- fixed points, continuum phases and phase transitions?

- universality classes? which ingredients are really crucial?

new tools, thanks to QFT embedding, for defining simplicial gravity path integral
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new perspective:
- focus on QFT generating sum over triangulations, rather than sum itself

* look for approximations which implicitly incorporate infinite sum over discrete structures



Simplicial path integral for guantum gravity

AT

z = / DpDp el NP = N

sym(I’

— Zw /Dg €ZSA(9A) — /Dg 6’65(9)
A

defining full simplicial path integral for quantum gravity = defining full GFT path integral for suitable model

new tools, thanks to QFT embedding, for defining simplicial gravity path integral

new perspective:
- focus on QFT generating sum over triangulations, rather than sum itself

* look for approximations which implicitly incorporate infinite sum over discrete structures

q continuum limit of simplicial gravity path integral ~ RG flow of GFT model



Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool

for taking into account the physics of more and more d.o.f.s

need to understand effective dynamics at different “GFT scales”:

RG flow of effective actions & phase structure & phase transitions Koslowski. '07: DO. ‘07

many results in related formalisms:

- renormalization in SF models (~ lattice gauge theories)
Dittrich, Bahr, Steinhaus, Martin-Benito, ......

- different (kinematical) phases in LQG _ _ n _
Ashtekar-Lewandowski, Koslowski-Sahimann, Dittrich-Geiller)

+ phase diagrams in (causal) dynamical triangulations _ o
Ambjorn, Loll, Jurkiewicz, .....

 renormalization and phase diagram of tensor models Eichhorn, Koslowski, Ben Geloun, Bonzom, ....



GFT renormalisation - general scheme

. _ 2V
Z — | DODG S e®)
/ e EF: sym(T") A
S(p,®) = %/[dgz']@(gi)lc(gz%@(gi) + % /[dgq;a]@(gil)----90(§7;D)V(gm,§iD) + c.c.

general strategy:

treat GFTs as ordinary QFTs defined on Lie group manifold

use group structures (Killing form, topology, etc) to define notion of scale and to set up mode integration
subtleties of quantum gravity context at the level of interpretation

scales:
defined by propagator: e.g. spectrum of Laplacian on G = indexed by group representations

d
> Jelie+1) SN
=1

* need to have control over “theory space” (e.g. via symmetries) A. Kegeles, DO, '15,'16

 main difficulty:
controlling the combinatorics of GFT Feynman diagrams
need to adapt/redefine many QFT notions: connectedness, subgraph contraction, Wick ordering, .....



GFT Renormalization: geometric interpretation??

arguments of GFT field:  b; € su(2) gravity case: d=4 }

| bl ~ J=irrep of SU(2) ~ “area of triangles”




GFT Renormalization: geometric interpretation??

arguments of GFT field:  b; € su(2) gravity case: d=4 }

| bl ~ J=irrep of SU(2) ~ “area of triangles”

“geometric” interpretation?

RG flow from large areas to small areas?




G

arguments of GFT field:  b; € su(2) gravity case: d=4 }

| bl ~ J=irrep of SU(2) ~ “area of triangles”

=T

from LQG

Renormalization: geometric interpretation??

“geometric” interpretation?

RG flow from large areas to small areas?

geometric intepretation?

from Regge calculus

CAUTION in interpreting things geometrically outside continuum geometric approx.

expect “physical”’ continuum areas A~<J><n>
expect proper continuum geometric interpretation (and effective metric field)

for <Jd> small, <n> large, A finite (not too small)

- from continuum geometric perspective, large areas are result of coarse graining of microscopic dofs



S

GFT Renormalization: combinatorics of

/N
— - -
1 1
h N\
! Y Y example of Feynman diagram in 4d
\ / . g | (interaction process of tetrahedra ~
1

4d simplicial complex)

~ 3 3

contraction of (divergent) subgraphs N 1 AN 1 i’
+ absorption in effective vertices is h g h d :
coarse-graining of simplicial lattices N i,
3 3 \ /
_ o — S — »

(perturbative) GFT renormalization =
renormalization of lattice gravity path integral \ J /

\ .

- - J

spin foam amplitude consistency under coarse graining

= RG consistency of GFT Feynman amplitudes see Bianca’s talk



FQG analySIS Of GFT mOdels D. Benedetti, J. Ben Geloun, DO, ‘14

regularised path integral: Z. [J, 7] ka[ /dgbdgb - —ASk [P, +Tr(J-¢)+Tr(J )

regulator cutting off IR modes (UV well-defined with appropriate choice of IR regulator)

Ask[qﬁ@] = Tr(a'Rk - ¢) = Z op Rk(P;P/) Op

effective action: I k[p, @] = Sup{Tr(J - 0)+ Tr(J - ) — WEI[J, J] — ASE [, 90]}
Wetterich equation: [813 [, = Tr[at R - (rf) + Rk)_l]] t = log k
boundary conditions:  Tx—o[, @] = e, P], [=nle, @] = Sle, ¥l ¥ = <¢>

computing the effective action solving the Wetterich equation amounts to solving the GFT path integral



Renormalization flow of GFT models - 3d example

- consider GFT model for 3d gravity:

1 1

S(p) = 5/[d9]|¢iz(g1,gz,93) + I/[d9]¢(91792793)90(93794795)90(95792796)90(96794791)+CC

p:SU(2)*° = C  forfields satisfying: ©(g1, 92, 93) = @(hg1, hgo, hgs) ~ Vh € SU(2)



Renormalization flow of GFT models - 3d example

- consider GFT model for 3d gravity:

1 1

S(p) = 5/[d9]|¢iz(g1,gz,93) + I/[d9]¢(91792793)90(93794795)90(95792796)90(96794791)+CC

p:SU(2)*° = C  forfields satisfying: ©(g1, 92, 93) = @(hg1, hgo, hgs) ~ Vh € SU(2)

- radiative corrections generate non-trivial kinetic term
Ben Geloun, Bonzom, '11; Ben Geloun, ‘13

9 %
kinetic term = e.g. Laplacian on SU(2) 9 95
93 93

J 1
>
propagator <m N Z AE)
=1



Renormalization flow of GFT models - 3d example

- consider GFT model for 3d gravity:

1 1

S(p) = 5/[619]%0?(91,92,93) + Z/[d9]¢(91792793)90(93794795)90(95792796)90(96794791)+CC

p:SU(2)*° = C  forfields satisfying: ©(g1, 92, 93) = @(hg1, hgo, hgs) ~ Vh € SU(2)

- radiative corrections generate non-trivial kinetic term
Ben Geloun, Bonzom, '11; Ben Geloun, ‘13

9 %
kinetic term = e.g. Laplacian on SU(2) 9 95
93 93

J 1
>
propagator (m N Z AE)
=1

* interactions generate effective terms associated to “bubbles”

“tensor invariants” S(p,p) = Z tolb(p, P)
beB

large “tensorial” theory space indexed by bipartite 3-colored graphs (“bubbles”) ~
dual to 3-cells with triangulated boundary




Renormalization flow of GFT models - 3d example

S.Carrozza, D. Oiriti, V. Rivasseau, '13; S. Carrozza, V. Lahoche, ‘16

this suggests to consider general models of “tensorial” type - example: d=3, G=SU(2)

Zni= [ ducy [ vl Sr 0 @
3
/ Sal, 7] =24 Z/ Hdgj W (g1, 82, 83, 84)1b(81) 1 (82) ¥ (83) 1 (g4)
Gaussian measure =17 =1 / \/
A1 (A) - (0) - - - o
+ dg;] X( )Y (81)1(82)Y(83) Y (84)¢(85) 1 (86)
; ; / Fﬂl g;] X (g1, 82. 83,8485, 86)0(81)1h(82) 1 (g3) 1 (84 g6 \ | ,

3
+ A6 2(A Z/ Hdgg ]V (g1, 82, 83, 84,85, 86)1(81)1(82)1h(83) 1 (84)Y (g5
=17 j=1




Renormalization flow of GFT models - 3d example

S.Carrozza, D. Oiriti, V. Rivasseau, '13; S. Carrozza, V. Lahoche, ‘16

this suggests to consider general models of “tensorial” type - example: d=3, G=SU(2)

3
/ Saly, ¢] = A (g1, 82,23, 84)1(g1)1(g2)1(g3)(g4)

Gaussian measure

>\61

3
3 Z/Hdgg | X9 (g1, 2, 83, 84, 5, 86) 0 (81)(82) ) (23) ) (84)1(g5

=1

T dea(A / Hdgj (g1, g2 83 81, 85 86) (81 (82)1 (22) (841 (25

=1




Renormalization flow of GFT models - 3d example

S.Carrozza, D. Oiriti, V. Rivasseau, '13; S. Carrozza, V. Lahoche, ‘16

this suggests to consider general models of “tensorial” type - example: d=3, G=SU(2)

Zni= [ ducy [ vl Sr 0
/ ) - 0 ; ;
Sl 0 =5 37 [T el W1, 2. 1)) )0 ) 80

Gaussian measure (=17 j=1
A\ 3 6 ) ) ) .
+ 6’13( );/[jl;[ldgj] X (g1, 2,83, 81, 85, 86)1 (1)1 (g2)1(83) 1 (84) 1 (85) 9 (g6) \ ,
3 6

=
aQ
N

+ Ne2(A)) /[H dg;] V' (g1, 82,83, 84,85, 86) (1)1 (82) ¥ (83) P (84) 1 (g5)

=17 j=1

example of Feynman diagram - amplitudes are lattice gauge theories

 proven to be perturbatively renormalizable at all orders
S.Carrozza, D. Oriti, V. Rivasseau, ‘13

key (most divergent, renormalizable) diagrams: melonic diagrams

most divergent configurations: flat connections



Renormalization flow of GFT models - 3d example

S.Carrozza, D. Oiriti, V. Rivasseau, '13; S. Carrozza, V. Lahoche, ‘16

this suggests to consider general models of “tensorial” type - example: d=3, G=SU(2)

Zni= [ ducy [ vl Sr 0
/ ) - 0 ; ;
S0, 0) =52 37 [T dg) WO e, 2. )0 (1) (82 ()i

Gaussian measure (=17 j=1
A\ 3 6 ) ) ) .
+ 6’13( );/[jl;[ldgj] X9 (g1, 82,83, 84,85, 86)0 (1) (g2) Y (g3) P (ga) 1 (gs) D (gs) \ ,
3 6

=
aQ
N

+ Ne2(A)) /[H dg;] V' (g1, 82,83, 84,85, 86) (1)1 (82) ¥ (83) P (84) 1 (g5)

=17 j=1

/ - - \
- T\
1 IR g
) \ K ) example of Feynman diagram - amplitudes are lattice gauge theories
\ / !
3 1

\ /

 proven to be perturbatively renormalizable at all orders
S.Carrozza, D. Oiriti, V. Rivasseau, ‘13

—_— - — —
- - -

key (most divergent, renormalizable) diagrams: melonic diagrams

-~
Tt . e e e - -

most divergent configurations: flat connections

use FRG techniques to explore nature of perturbative UV fixed points
and to search for non-perturbative and IR fixed points



Renormalization flow of GG

-1 models - 3d example

Tensorial GFT - d=3 , G=SU(2) S. Carrozza, V. Lahoche, ‘16

- FRG analysis at order 6 truncation:

* inthe UV (large spins): Gaussian fixed point - two relevant + two marginal repulsive directions

- in the UV: 1-parameter family of non-Gaussian fixed points - probably artefact of truncation

- in the UV: 2 isolated non-Gaussian fixed points: one with three irrelevant directions and one
relevant direction (FP1); one with three relevant, one irrelevant directions (FP2 - IR fixed point?)

« improvement of truncation (order 8, order 12 for subclass of interactions) suggest that FP1 is stable

UV fixed point (less evidence for FP2)

vvvvvvvvv

vvvvvvvvvvv

2F - s — N i L
> >
/;'/ /'/'/r//,» |
1 . r /'/V;;::r'/'/ I 1 0.8}
- this supports o .
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- asymptotic safety in UV o
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Renormalization flow of GFT models - 3d example

Tensorial GFT - d=3 , G=SU(2) S. Carrozza, V. Lahoche, ‘16

« FRG analysis at order 6 truncation:
* inthe UV (large spins): Gaussian fixed point - two relevant + two marginal repulsive directions
- in the UV: 1-parameter family of non-Gaussian fixed points - probably artefact of truncation

* inthe UV: 2 isolated non-Gaussian fixed points: one with three irrelevant directions and one
relevant direction (FP1); one with three relevant, one irrelevant directions (FP2 - IR fixed point?)

« improvement of truncation (order 8, order 12 for subclass of interactions) suggest that FP1 is stable
UV fixed point (less evidence forfP2) ...~

2 pd /r’ /'/V’/'/V - 1 :
. > > > e -
_ —= = — , Phase A

« asymptotic safety in UV o 'l

——_ | ] 0.4

 hints for condensation in IR | ==

— K&Rtg | 0.0F Phase B

-0.2
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GFT renormalization:

a brief survey of results



GFT perturbative renormalisation

towards renormalizable 4d gravity simplicial GFT models:

« calculation of some radiative corrections

see poster by Finocchiaro & 9
92 92
T. Krajewski et al., ’10; A. Riello, ’13; V. Bonzom, B. Dittrich, ’15; P. Dona’, ‘17 ; M. Finocchiaro, to appear 93 93

- finiteness results in 3d simplicial models (Boulatov with Laplacian kinetic term)

Ben Geloun, Bonzom, '11; Ben Geloun, ‘13

- renormalizable TGFT models (3d, 4d, and higher - multi scale analysis)1- Laplacian + tensorial interactions
Ben Geloun, Rivasseau, ’11 1

Carrozza, DO, Rivasseau, '12. ‘13 5(907 @) = Z tp Ib(QO, @)
—> with gauge invariance beB *

—> non-abelian ( SU(2) )

—> on homogeneous spaces (towards TGFTs for 4d QQ): first steps
Lahoche, DO, '15

— — ——> generic asymptotic freedom/safety

Ben Geloun, '12; Carrozza, '14; Carrozza, Lahoche, ‘16

- Hopf algebra methods in TGFT renormalization

d g d q/Y g L/ (v/v")
M. Raasakka, A. Tanasa, '13; R. Cochou, V. Rivasseau, A. Tanasa, ‘17 q A )d’ - N q ®>O<



GFT (and friends) non-perturbative renormalisation

 GFT constructive analysis  Freidel, Louapre, Noui, Magnen, Smerlak, Gurau, Rivasseau, Tanasa, Dartois, Delpouve, .....

non-perturbative resummation of perturbative (SF) series

variety of techniques:
- intermediate field method (loop-vertex expansion)

 Borel summability

- FRG analysis of (discrete gravity) tensor models and SYK-like tensor models/QFTs

Eichhorn, Koslowski, Duarte Pereira, .... Benedetti, Ben Geloun, Carrozza, Gurau, Rivasseau, Sfondrini, Tanasa, Wulkenhaar, ....

comparison with results from resummation of matrix see talks by Koslowski, Carrozza, Ben Geloun
models (FRG counterpart of double scaling limit)
see posters by Castro, Duarte Pereira, Lumma, Perez Sanchez

- TGFT non-perturbative renormalization (e.g. FRG analysis ala Wetterich-Morris)

Benedetti, Ben Geloun, DO, Martini, Lahoche, Carrozza, Ousmane-Samary, Duarte Pereira, ....



GFT non-perturbative renormalisation

recent results:

FRG for (tensorial) GFT models (similar to matrix/tensor models but distinctively field-theoretic)

Eichhorn, Koslowski, ‘14

- Polchinski formulation based on SD equations  kajewski, Toriumi, 14

« general set-up for Wetterich-Morris formulation based on effective action

* RG flow and phase diagram (in simple truncations) for: Benedetti, Ben Geloun, DO, '14 ; Ben Geloun, Martini, DO, ’15, 16,
Benedetti, Lahoche, '15; Lahoche, Ousmane-Samary, ’16; ......

TGFT on compact U(1)Ad (with gauge invariance)

TGFT on non-compact RAd (with gauge invariance)

TGFT on SU(2)"3 (with gauge invariance). Carrozza, Lahoche, 16

models/truncations beyond melonic sector

J. Ben Geloun, T. Koslowski, A. Duarte Pereira, DO, ‘18 key Cha”enges-

S. Carrozza, V. Lahoche, DO, ‘17 : . . :
- scaling dimensions of couplings (depend on

combinatorics of corresponding interactions)
. epsilon-expansion Carrozza. ‘14 - non-autonomous systems of flow equations
* more subtle thermodynamic limit

 combinatorics



GFT non-perturbative renormalisation

recent results:

FRG for (tensorial) GFT models (similar to matrix/tensor models but distinctively field-theoretic)

Eichhorn, Koslowski, ‘14

 Polchinski formulation based on SD equations
Krajewski, Toriumi, ‘14

« general set-up for Wetterich-Morris formulation based on effective action

Benedetti, Ben Geloun, DO, '14 ; Ben Geloun, Martini, DO, ’15, 16,

* RG flow and phase diagram (in simple truncations) for: Benedetti, Lahoche, '15; Lahoche, Ousmane-Samary, ’16; ......

TGFT on compact U(1)Ad (with gauge invariance)

0.2

TGFT on non-compact RAd (with gauge invariance)

TGFT on SU(2)A3 (with gauge invariance). Carrozza, Lahoche, 16 o0

models/truncations beyond melonic sector

J. Ben Geloun, T. Koslowski, A. Duarte Pereira, DO, ‘18 02
S. Carrozza, V. Lahoche, DO, ‘17

generically (so far): 06,

- asymptotic freedom/safety i,

-0.8 + -

* hints of broken or condensate phase

(non-trivial minimum of classical potential) ¥

0.00 0.01 0.02 0.03 0.04




GFT non-perturbative renormalisation

recent results:

FRG for (tensorial) GFT models (similar to matrix/tensor models but distinctively field-theoretic)

 Polchinski formulation based on SD equations Eichhorn, Koslowski, ‘14
Krajewski, Toriumi, ‘14
« general set-up for Wetterich-Morris formulation based on effective action
- RG flow and phase diagram (in simple truncations) for: Benedetti, Ben Geloun, DO, '14 : Ben Geloun, Martini, DO, ’15, ’16,
Benedetti, Lahoche, '15; Lahoche, Ousmane-Samary, ’16; ......

« TGFT on compact U(1)"d (with gauge invariance)

- TGFT on non-compact RAd (with gauge invariance)

« TGFT on SU(2)"3 (with gauge invariance). Carrozza, Lahoche, '16

« models/truncations beyond melonic sector

J. Ben Geloun, T. Koslowski, A. Duarte Pereira, DO, ‘18
S. Carrozza, V. Lahoche, DO, ‘17

« Landau approach to phase transitions A. Pithis, J. Thurigen, ’18
* inequivalent condensate representations of quantum GFT algebra
_ A. Kegeles, DO, ‘17
generically (so far):

- asymptotic freedom/safety

* hints of broken or condensate phase

(non-trivial minimum of classical potential) ¥
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GFT renormalization:

key open issues and new directions



Key open issues: RG flow of more (1)GFT models

(T)GFT Renormalization with simplicity constraints

Simplicity constraints, imposed on topological BF models on Spin(4) or SL(2,C), ensure “geometricity”

GFT amplitudes become 4d simplicial gravity path integrals - various models

Simple group structure is lost; symmetries are broken; amplitudes much more involved

No complete power counting of divergences - results on various classes of diagrams ., o, Bonzom, Dittrich.
see Finocchiaro’s poster  Finocchiaro, Dona, ...

. g . . . . . . . . Barrett, Williams, Freidel,
Main difficulty: dominant configurations are not just flat connections (richer simplicial  conrady, Pereira

geometry, related to Regge geometries found in semi-classical spin foam amplitudes) Hellmann, Han, Zhang, ...

Main difficulty 2: do not know what is relevant (large enough) theory space

rely on (and extend) work on GFT symmetries  A. Kegeles, DO, ’15, ‘16



Key open issues: RG flow of more (1)GFT models

(TYGFT Renormalization with additional local directions DO, Sindoni, Wilson-Ewing, *16: Y. Ling,

DO, M. Zhang, ’17; S. Gielen, DO, ‘17

Coupling simplicial geometry with (minimally coupled) scalar fields (simpler for free, massless case):
o0 B . 8277,
K=} / dgudgude &(gu, 9) K5 (g0, gu) (G ) i
n=0

a¢2n¢ 5
V = / (H dgva> d¢v5(gv17 c oy Gug s gb) H @(gva, ¢)

a=1 a=1

scalar fields used as “embedding coordinates” —> similar to standard QFTs in flat space with additional
“internal” (tensorial) non-local data (Quantum geometric)

very similar to SYK-like tensorial models

- What is the RG flow of these “mixed models”? dominant diagrams? fixed points? phases?
- scalar field momentum (energy) as running scale —> different from usual (T)GFTs

* issue: how do matter fields modify the RG flow of “pure gravity” GFTs?




Key open issues: GFT vs lattice SF renormalization

recall: Feynman amplitudes = spin foam models/lattice gauge theories

RG flow of spin foam models can be studied with LGT methods cut-off in representations

Dittrich, Bahr, Steinhaus, Delcamp, ...

) X RG scale is “complexity of lattice”,
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flow is driven by refinement

see Bianca’s talk

Amplitudes flow by requiring consistency under restriction to coarser boundary states

restricts to
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For GFT models with same SF amplitudes, how to compare the RG scheme and the resulting phase diagram?
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For GFT models with same SF amplitudes, how to compare the RG scheme and the resulting phase diagram?
contraction of (divergent) GFT subgraphs + absorption in effective vertices ~ coarse-graining of SF lattices

spin foam amplitude consistency under coarse graining = RG consistency of GFT Feynman amplitudes




Key open issues: GFT vs lattice SF renormalization

recall: Feynman amplitudes = spin foam models/lattice gauge theories

cut-off in representations

RG flow of spin foam models can be studied with LGT methods
Dittrich, Bahr, Steinhaus, Delcamp, ...

RG scale is “complexity of lattice”,
flow is driven by refinement

see Bianca’s talk

Amplitudes flow by requiring consistency under restriction to coarser boundary states

restricts to

Alow com ( Viow com) } Amed com ( wmed com) i ) Ahigh com ( whigh com)

For GFT models with same SF amplitudes, how to compare the RG scheme and the resulting phase diagram?
contraction of (divergent) GFT subgraphs + absorption in effective vertices ~ coarse-graining of SF lattices

spin foam amplitude consistency under coarse graining = RG consistency of GFT Feynman amplitudes

Two aspects should become more central in (T)GFT RG analysis (e.g. using tensor network methods):
- combinatorial structure of boundary states and effects on RG flow

- combinatorial complexity as co-determining the “scale” of the RG flow




Key open issues: how to extract physics”?

suppose we have the full RG flow of a TGFT model (full continuum theory); how do we interpret it, physically?
how do we translate it in the language of gravity, geometry, effective field theory?

02+

many related questions:

0.0

order parameters?  which observables should we focus on?

-0.2

what is a spacetime metric, from (T)GFT perspective?

- useful insights from (causal) dynamical triangulations

- insights from LQG o)

- comparison with SYK-like tensorial GFTs




Key open issues: how to extract physics”?

suppose we have the full RG flow of a TGFT model (full continuum theory); how do we interpret it, physically?
how do we translate it in the language of gravity, geometry, effective field theory?

02+

many related questions:

0.0

order parameters?  which observables should we focus on?

-0.2

what is a spacetime metric, from (T)GFT perspective?

- useful insights from (causal) dynamical triangulations
- insights from LQG o)

- comparison with SYK-like tensorial GFTs

- recently developed strategy: cosmology from GFT (condensate) hydrodynamics Ay
Gielen, DO, Sindoni, Wilson-Ewing, De Cesare, Pithis, Sakellariadou, ...., "13 - ...
« interpret GFT hydrodynamic equations as non-linear version of “quantum cosmology”
A; (9;03- (¢) — B;oj(¢) +w;5;(¢)* =0 + use group-data and simplicial geometry

- compute collective observables, e.g. “total volume” + obtain dynamical equations for them



Thank you for your attention!



