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Simplicial path integral for quantum gravity

path integral for simplicial geometries associated to triangulation A� =

Z
Dg� ei S�(g�)

dynamical variables should encode the geometry of lattices

action should correspond to the discretisation of some continuum gravity action

measure should encode some essential symmetries
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Simplicial path integral for quantum gravity

path integral for simplicial geometries associated to triangulation A� =

Z
Dg� ei S�(g�)

dynamical variables should encode the geometry of lattices

action should correspond to the discretisation of some continuum gravity action

measure should encode some essential symmetries

can be defined using group-theoretic ingredients Part 1

define strategy/procedure for continuum limit via GFT renormalization Part 3

can be embedded in QFT formalism: Group Field Theory Part 2



 Discrete quantum gravity path integrals 

in group-theoretic variables



GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

SECOND ROOT: LOOP QUANTUM GRAVITY

Whence the GFT idea (from LQG perspective)?

want quantum theory of dynamics of (very) many d.o.f.⇒ natural QFT framework

quantum of space: graph vertex↔ elementary cell
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quantum field theory for vertices/cells⇒ GFT ϕ(g1, g2, g3) ↔ ϕ(x1, x2, x3)

where to look for quantum dynamics of spacetime (e.g. LQG)?

microscopic dynamics can be quite different from continuum classical dynamics

dynamics of single interaction process/history of fundamental excitations→
GFT Feynman amplitudes

(any spin foam model (given complex) is a GFT Feynman amplitude)

full (discrete) quantum dynamics→ GFT n-point functions and associated eqns

(Ward ids, SD eqns)

full continuum quantum dynamics→ same eqns but in continuum limit: critical

points, effective actions, etc
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Quantum triangle in 3d - classical phase space

see talks by A. Riello and B. Dittrich
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Quantum triangle in 3d - classical phase space

intrinsic geometry of classical triangle in R3

3 edge vectors that close x1, x2, x3 2 R3 s.t.
X

i

xi = 0

see talks by A. Riello and B. Dittrich
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part of classical phase space

Phase space for triangle in discrete 3d gravity

[T ⇤SU(2)]⇥3
su(2) ' R3

group elements {gi} = discrete connection, encoding extrinsic geometry/curvature
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part of classical phase space

Phase space for triangle in discrete 3d gravity

[T ⇤SU(2)]⇥3
su(2) ' R3

group elements {gi} = discrete connection, encoding extrinsic geometry/curvature

intrinsic geometry of classical triangle in R3

3 edge vectors that close x1, x2, x3 2 R3 s.t.
X

i

xi = 0

discretised 3d gravity variables from continuum theory:

GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

COLORED GFT FOR 3D EUCLIDEAN GRAVITY

Feynman diagrams Γ are dual to 3d simplicial complexes
amplitudes AΓ written in group, representation or algebra variables
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last line is discretized path integral for 3d gravity S(e, ω) =
R
Tr(e ∧ F(ω))

exact duality: simplicial gravity path integral↔ spin foam model

20 / 42Z

i
e = bi 2 su(2)

triad Lie-algebra valued 1-form 
——> Lie algebra element

connection Lie algebra-valued 1-form ——>           
group-valued parallel transport ——> group element

Pe
R
i⇤ ! = gi 2 SU(2)

see talks by A. Riello and B. Dittrich



quantum triangle:

Quantum triangle in 3d - Hilbert space, representations

Htriangle = Inv
⇣
⌦iH

SU(2)
i

⌘
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Htriangle = Inv
⇣
⌦iH

SU(2)
i

⌘
3  (x1, x2, x3) ? � (x1 + x2 + x3)

• non-commutative Lie algebra (edge vector) representation: HSU(2)
i = L2

?(R3)

write f⋆ := Q−1(f), where Q is the quantization map (which we assume to be invertible). Then
f = Q(f⋆), and on the one hand

(fg)(
ˆ⃗
X)|X⃗⟩ = |X⃗⟩ ⋆ (fg)⋆(X⃗) , (3.33)

on the other hand

(fg)( ˆ⃗X)|X⃗⟩ = f( ˆ⃗X)g( ˆ⃗X)|X⃗⟩ = f( ˆ⃗X)|X⃗⟩ ⋆ g⋆(X⃗) = |X⃗⟩ ⋆ f⋆(X⃗) ⋆ g⋆(X⃗) . (3.34)

Therefore, the ⋆-product and the quantization map Q are related by

f⋆ ⋆ g⋆ = Q−1(Q(f⋆)Q(g⋆)) . (3.35)

There’s one further assumption we need to make: the states |X⃗⟩ must form an (over-complete)
basis for H, that is, the set {|X⃗⟩ : Xi ∈ R} spans H and we have the following resolution of the
identity with the ⋆-product

=

∫
dnX |X⃗⟩ ⋆ ⟨X⃗ | . (3.36)

We’re now in position to determine the functions Eg(X⃗) = ⟨X⃗ |g⟩ and, therefore, the sought for
group Fourier transform: unitary map from functions on G to functions on g∗.

Matti’s somenotes-v2

The basic idea is to first consider the abstract operator algebra of operators X̂i and ζj(ĝ)
defined through the commutation relations

[X̂i, X̂j ] = iϵ k
ij X̂k , [X̂i, ζ

j(ĝ)] = iLiζ
j(ĝ) , [ζi(ĝ), ζj(ĝ)] = 0 (3.37)

These commutators are chosen such that they reflect the classical Poisson algebra arising from the
canonical symplectic structure of the phase space T ∗G = G × g∗, namely, [Ô, Ô′] = −i ̂{O, O′} for
the canonical operators. (For brevity, we use the notation G := SU(2) and g := su(2) throughout.)

Here, we may write ζ̂j(g) = ζj(ĝ), since the coordinates on the group commute, and so we may
freely change the parametrization of the group elements. (In fact, we must consider the universal
enveloping algebra generated by the operators X̂i and ζj(ĝ), since the algebra closes only at this
level due to the non-canonical commutation relation of the two.)

Now, we want to represent this algebra on a Hilbert space. For this, we must determine how
the operators act on the states. The (functions of the) operators ζj(ĝ) constitute a MASA of the
above abstract algebra, and so their eigenstates |g⟩ span the (rigged) Hilbert space. Thus, it suffices
to determine the action of the operators on the states |g⟩. We define

π(X̂i)|g⟩ = iLi|g⟩ , π(ζj(ĝ))|g⟩ = ζj(g)|g⟩ (3.38)

where this abstract notation may be concretely understood to mean that the equalities hold for
any ⟨ψ| multiplying from the left9. It is easy to verify (by using the commutation relations and the

9In fact, since the coordinates ζj(g) cannot necessarily be well-defined for all g ∈ G, but only for an open
subset H ⊂ G s.t. #→ cl(H) = G, to give a rigorous meaning to the above identity, we should understand it to
apply only under integration. That is, it is an abstract definition for the action of ζj(ĝ) on linear combinations
|ψi⟩ =

R
dg |g⟩⟨g|ψi⟩ of the states |g⟩, understood to be well-defined only inside an inner product as

⟨ψ1|π(ζj(ĝ))|ψ2⟩ =

Z

G
dg ⟨ψ1|g⟩ζ

j(g)⟨g|ψ2⟩ ≡

Z

H
dg ψ1(g)ζj(g)ψ2(g) (3.39)

where ψi are regular functions on G. However, the states |g⟩ should be understood only in a distributional sense via
the rigged Hilbert space formalism in any case. Therefore no loss of generality is necessarily implied.

– 9 –

for given 
quantisation map

(eg1 ? eg2) (x) ⌘ eg1g2(x)complete basis of non-commutative plane waves
L. Freidel, E. Livine, ’05; L. Freidel, S. Majid, ’06; A. Baratin, D. Oriti, ’10; C. Guedes, DO, M. Raasakka, ‘13
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 (x1, x2, x3) ? �(x1 + x2 + x3) =
Z

[dg]3
Z

dh (g1h, g2h, g3h) eg1(x1)eg2(x2)eg3(x3)

•   group (connection) representation: H
SU(2)
i = L2(SU(2))
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These commutators are chosen such that they reflect the classical Poisson algebra arising from the
canonical symplectic structure of the phase space T ∗G = G × g∗, namely, [Ô, Ô′] = −i ̂{O, O′} for
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⟨ψ1|π(ζj(ĝ))|ψ2⟩ =

Z

G
dg ⟨ψ1|g⟩ζ

j(g)⟨g|ψ2⟩ ≡

Z

H
dg ψ1(g)ζj(g)ψ2(g) (3.39)

where ψi are regular functions on G. However, the states |g⟩ should be understood only in a distributional sense via
the rigged Hilbert space formalism in any case. Therefore no loss of generality is necessarily implied.

– 9 –

for given 
quantisation map

(eg1 ? eg2) (x) ⌘ eg1g2(x)complete basis of non-commutative plane waves
L. Freidel, E. Livine, ’05; L. Freidel, S. Majid, ’06; A. Baratin, D. Oriti, ’10; C. Guedes, DO, M. Raasakka, ‘13



quantum triangle:

Quantum triangle in 3d - Hilbert space, representations

Htriangle = Inv
⇣
⌦iH

SU(2)
i

⌘

 (x1, x2, x3) ? �(x1 + x2 + x3) =
Z

[dg]3
Z

dh (g1h, g2h, g3h) eg1(x1)eg2(x2)eg3(x3)

•   group (connection) representation: H
SU(2)
i = L2(SU(2))

•   spin representation (via Peter-Weyl decomposition):

 (g1, g2, g3) =
X

 j1j2j3
m1m2m3

Cj1j2j3
n1n2n3

Dj1
m1n1

(g1)Dj2
m2n2

(g2)Dj3
m3n3

(g3)

3j-symbol - intertwiner
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i = �ji2N/2H
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9In fact, since the coordinates ζj(g) cannot necessarily be well-defined for all g ∈ G, but only for an open
subset H ⊂ G s.t. #→ cl(H) = G, to give a rigorous meaning to the above identity, we should understand it to
apply only under integration. That is, it is an abstract definition for the action of ζj(ĝ) on linear combinations
|ψi⟩ =

R
dg |g⟩⟨g|ψi⟩ of the states |g⟩, understood to be well-defined only inside an inner product as

⟨ψ1|π(ζj(ĝ))|ψ2⟩ =

Z

G
dg ⟨ψ1|g⟩ζ

j(g)⟨g|ψ2⟩ ≡

Z

H
dg ψ1(g)ζj(g)ψ2(g) (3.39)

where ψi are regular functions on G. However, the states |g⟩ should be understood only in a distributional sense via
the rigged Hilbert space formalism in any case. Therefore no loss of generality is necessarily implied.

– 9 –

for given 
quantisation map

(eg1 ? eg2) (x) ⌘ eg1g2(x)complete basis of non-commutative plane waves
L. Freidel, E. Livine, ’05; L. Freidel, S. Majid, ’06; A. Baratin, D. Oriti, ’10; C. Guedes, DO, M. Raasakka, ‘13
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where to look for quantum dynamics of spacetime (e.g. LQG)?

microscopic dynamics can be quite different from continuum classical dynamics

dynamics of single interaction process/history of fundamental excitations→
GFT Feynman amplitudes

(any spin foam model (given complex) is a GFT Feynman amplitude)

full (discrete) quantum dynamics→ GFT n-point functions and associated eqns

(Ward ids, SD eqns)

full continuum quantum dynamics→ same eqns but in continuum limit: critical

points, effective actions, etc
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see talks by A. Riello and B. Dittrich
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(depending on quantisation map):

use simplicial complex          and its dual complex       , with assigned same group-theoretic variables� �

see talks by A. Riello and B. Dittrich
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discrete non-commutative path integral 
(depending on quantisation map):

can also be given in group variables (as lattice gauge theory) and spin variables (spin foam models ~ LQG)

use simplicial complex          and its dual complex       , with assigned same group-theoretic variables� �

see talks by A. Riello and B. Dittrich



4d simplicial geometry in group-theoretic data

b b

b

b

1

2

3

4

N

classical tetrahedron in 4d: 

BIJ
i ' N I ^ bJ

i

BIJ
i 2 ^2R4 ' so(4) , N I 2 S3 ⇢ T R4 NI (⇤BIJ

i ) = 0
X

i

BIJ
i = 0

J. Barrett, L. Crane, ’97; J. Baez, J. Barrett, ’98; L. Freidel, K. Kransov, ‘07

similarly in Lorentzian context, based on Lorentz group SO(3,1)
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different strategies for imposing constraints - different resulting quantum theories
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Simplicial path integral for 4d quantum gravity
Plebanski-Holst action (topological BF theory+simplicity constraints)

connection : ! 2 so(3, 1) curvature F (!) = d!! co� tetrad eI (I = 0, 1, 2, 3)

SPleb = 1
G

R
M

h
B ^ F (!) + 1

� ? B ^ F (!) + � B ^B
i

B 2 so(3, 1) �[IJ][KL] = �[KL][IJ]
�� = 0 ) ? B ^B = 0 ) B ' ?e ^ e

several models in the literature (depending on imposition of geometric constraints)

one construction:

A� =
Z

[d6Bt][dN⌧ ]DBt,N⌧

�
[h⌧�] ?

Y

t

h
ei tr[Bt Ht] ? ��N⌧o(t)B

�
t N

�1
⌧o(t)

(�B+
t

)
i

can also be expressed in group representation (as lattice gauge theory) 
or ”spin” representation (spin foam model ~ LQG)

A. Baratin, D. Oriti, ‘11

discretize to get simplicial gravity action and path integral (as in 3d case)

(non-commutative) simplicial gravity path integral



Simplicial path integral for quantum gravity
path integral for simplicial geometries associated to triangulation

A� =

Z
Dg� ei S�(g�)with group-theoretic ingredients
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Z
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need to remove dependence on fixed triangulation and control arbitrary refined ones: 

one strategy:

sum over triangulations weighted by simplicial gravity path integral

this defines full theory: candidate path integral of continuum quantum gravity
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Simplicial path integral for quantum gravity
path integral for simplicial geometries associated to triangulation

A� =

Z
Dg� ei S�(g�)

need to remove dependence on fixed triangulation and control arbitrary refined ones: 

one strategy:

sum over triangulations weighted by simplicial gravity path integral

this defines full theory: candidate path integral of continuum quantum gravity

Z =
X

�

w(�)A� =
X

�

w(�)

Z
Dg� ei S�(g�) ⌘

Z
Dg ei S(g)

fixing all group theoretic data, eg to equilateral triangulations, gives 
purely combinatorial construction ~ euclidean dynamical triangulations

with group-theoretic ingredients



Simplicial path integral for quantum gravity

Z =
X

�

w(�)A� =
X

�

w(�)

Z
Dg� ei S�(g�) ⌘

Z
Dg ei S(g)

new questions:

•  (in addition to: which discrete variables and amplitudes?)

•  which triangulations? which topologies? 

•  which of them are dominant/suppressed in which regime?

•  which combinatorial measure?

•  how to control it? numerically? analytically?

•  universality classes? which ingredients are really crucial?

defining/computing the sum = defining the continuum gravity path integral

this defines full theory: candidate path integral of continuum quantum gravity



The Group Field theory formulation

 of discrete gravity path integrals



Group field theories
(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin, ……)

very general framework; interest rests on specific models (e.g. for QG models, G = Lorentz group, d = 4)

QFT of spacetime, not defined on spacetime

' : G⇥d ! CQuantum field theories over group manifold  G (or corresponding Lie algebra)

relevant classical phase space for “GFT quanta”: (T ⇤G)⇥d ' (g⇥G)⇥d

can reduce to subspaces in specific models
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3

triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L

2(G⇥d): F(Hv) =
L

1

V=0 sym

n⇣
H(1)

v ⌦H(2)
v ⌦ · · ·⌦H(V )

v

⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h
'̂(~g) , '̂†(~g0)

i
= IG(~g,~g0)

⇥
'̂(~g) , '̂(~g0)

⇤
=

h
'̂
†(~g) , '̂†(~g0)

i
= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0

i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:

O
 =(�,J

(ab)
(ij) ,◆i)

('̂†) =
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@
Y

(i)

Z
[dgia]

1

A 
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�1
jb )

Y

i
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Figure 1: GFT propagator and vertex

2.2 Non-commutative Fourier transform and bivector formulation

The simplicial geometry encoded in the model (5) is best understood in a dual formulation,
coined ‘metric representation’ in [21], obtained by a group Fourier transform of the field. The
relevant Fourier transform here is the obvious extension of the non-commutative SO(3) Fourier
transform [33, 34, 35] to the group [SO(3)⇤ SO(3)]4:

⇤⇤(x1, · · · x4) :=
⇥

[dgi]4 ⇤(g1, · · · g4) eiTrx1g1 · · · eiTrx4g4 (7)

The variables xi belong to the Lie algebra so(4) = su(2) ⌅ su(2). The kernel of the Fourier
transform is a product of ‘plane waves’ Eg(x) = eiTrxg, where the trace Tr is defined in terms of
the usual trace of 2⇤ 2 matrices1 as Trxg=

�
± ⇥g±tr[x±g±] with ⇥g±=sign(trg±). Thus Eg(x)

is itself a product of two SO(3) plane waves eg±(x±) :=ei�g±trx±g± . The plane waves satisfy the
properties: ⇥

d6x Eg(x) = �(g), Eg-1(x) = Eg(�x) (8)

1Let ⇧j be i times the Pauli matrices, then tr⇧i⇧j =��ij . Given and SU(2) element u=e�nj⇥j parametrized by
the angle ⇤ ⇤ [0, ⌅] and the unit R3-vector ⌦n and a=aj⇧j in the algebra su(2), we thus have tr[au]=� sin ⇤⌦n · ⌦a.
Also ⇥u :=sign(tru)=sign(cos ⇤).
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specific combinatorics depends on model
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Feynman perturbative expansion around trivial vacuum

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =
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where to look for quantum dynamics of spacetime (e.g. LQG)?

microscopic dynamics can be quite different from continuum classical dynamics

dynamics of single interaction process/history of fundamental excitations→
GFT Feynman amplitudes

(any spin foam model (given complex) is a GFT Feynman amplitude)

full (discrete) quantum dynamics→ GFT n-point functions and associated eqns

(Ward ids, SD eqns)

full continuum quantum dynamics→ same eqns but in continuum limit: critical

points, effective actions, etc
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L

2(G⇥d): F(Hv) =
L
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v ⌦H(2)
v ⌦ · · ·⌦H(V )

v

⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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Group field theory for 3d quantum gravity

many-body quantum states = quantised triangles (glued to one another)
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Feynman amplitudes in different representations:

see talks by A. Riello and B. Dittrich
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COLORED GFT FOR 3D EUCLIDEAN GRAVITY

Feynman diagrams Γ are dual to 3d simplicial complexes
amplitudes AΓ written in group, representation or algebra variables
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simplicial complex dual to GFT Feynman diagram

lattice gauge theory formulation 
of 3d gravity/BF theory 

Group field theory for 3d quantum gravity
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see talks by A. Riello and B. Dittrich



Group field theory for 4d quantum gravity

A� =
Z
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�1
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(�B+
t

)
i

starting from GFT model for 4d BF theory (here in Lie algebra/bivector variables, with simplicial interactions)

and adding “geometricity constraints” to the dynamics

one can define GFT models whose Feynman amplitudes are simplicial gravity path integrals, e.g.

S[�] =
1
2

Z
dB

Z
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equivalently re-written as lattice gauge theory or spin foam model

A. Baratin, DO, ‘11



GFT and holography: 
first contacts



GFTs and tensor models
same combinatorics, no group-theoretic data

purely combinatorial amplitudes ~ lattice gravity path integrals on equilateral triangulations

(Ambjorn, Durhuus, Sasakura, …, Gurau, Rivasseau, Bonzom, Ryan, …..)

S(T ) =
1
2

X

i,j,k

TijkTkji �
�

4!
p

N3

X

ijklmn

TijkTklmTmjnTnli

dropping group/algebra data
(or restricting to finite group)example: d=3

Tijk : Z⇥3
N ! C

Tijk : X⇥3 ! C X = 1, 2, ..., N'(g1, g2, g3) : G
⇥3 ! C

i

j

i

j

k

Quantum dynamics:

Z =
Z
DT e�S(T,�) =

X

�

�V�

sym(�)
Z� =

X

�

�V�

sym(�)
NF�� 3

2 V�

can be recast in terms of Regge action for gravity discretised on equilateral triangulation

recently used also in the context of SYK model and AdS/CFT
Witten, Klebanov, Gurau, Rosenhaus, Verlinde, ……



Tensorial (G)FTs, SYK model and holography
Witten, Klebanov, Gurau, Rosenhaus, Verlinde, ……

SYK-like tensor models

Sachdev-Ye-Kitaev models = disordered systems of N Majorana fermions

[Sachdev, Ye, George, Parcollet ’90s...; Kitaev ’15, Maldacena, Stanford, Polchinski, Rosenhaus...]

Hint ⇠ Ji1 i2 i3 i4  i1 i2 i3 i4 ,
⌦
Ji1 i2 i3 i4

↵
⇠ 0 ,

D
J2i1 i2 i3 i4

E
⇠ J2

N3

Many interesting properties:

solvable at large N

emergent conformal symmetry at strong coupling

maximal quantum chaos

holography in low dimension: ”NAdS2/NCFT1”

Same melonic large N limit as tensor models [Witten ’16]�

�

⌧

�

! SYK-like quantum-mechanical models:

same qualitative properties at large N and strong coupling;

no disorder.

! New class of QFTs with solvable large N limits.
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many related models have been constructed (bosonic, supersymmetric, different dimension, etc)
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tensorial (G)FT models that 
capture the same physics

O(N)
3
tensor models (d = 0)

[Gurau, Bonzom, Rivasseau,... 10s; Tanasa, SC ’15]

Statistical model for Ti1 i2 i3 transforming under O(N)
3
as

Ti1 i2 i3 ! O
(1)
i1j1

O
(2)
i2j2

O
(3)
i3j3

Tj1j2j3

Invariant action:

S(T ) =
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�2
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Ti6 i2 i3Ti1 i2 i3Ti6 i4 i5Ti1 i4 i5 + · · ·

=
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+
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+

�2
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 !

Large N expansion indexed by Gurau degree !

FN := ln

Z
[dT ]e

�S(T )
=

X

!2N/2

N
3�! F!

and dominated by melon diagrams (!=0).
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Klebanov–Tarnopolsky model

Tensor quantum mechanics of N
3 Majorana fermions: [Klebanov, Tarnopolsky ’16...]

S =

Z
dt

✓
i

2
 i1 i2 i3@t i1 i2 i3 +

�

4N3/2
 i1 i2 i3 i4 i5 i3 i4 i2 i6 i1 i5 i6

◆

Melonic dominance at large N ) closed Schwinger-Dyson equation:

G�1 = G�1
free +

G

G

G

Strong coupling ) neglect Gfree:

Z
dt

0
G(t, t0)⌃(t0, t00) = ��(t � t

0
) , ⌃(t, t0) = �2

[G(t, t0)]3◆
✓

⇣
⌘

) emergent reparametrization symmetry

t ! f (t) , G(t, t0) ! [f
0
(t)f

0
(t

0
)]

1/4
G(f (t), f (t0))
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GFT states as generalised tensor networks

Tensor Networks

In the tensor network methods, a quantum state        is described in terms of a set of 
tensors. Consider a lattice L made of N sites, where each site is described by a complex 
vector space     of finite dimension d.

| i =
dX

i1,i2,...,iN=1

( )i1,i2,...,iN |i1, i2, ..., iN i

( )i1,i2,...,iN = tTr

 
O

v

T (v)

!

a TN decomposition for        consists of a set of tensors          and a network pattern or 
graph characterised by a set of vertices and a set of directed edges

 - a pure state                        of the lattice can be expanded as  | i 2 V⌦N

where         denotes a basis of      for site s in L

| i

V

T (v)| i

|isi V

the tensor trace contracts all bond 
indices, leaving only the physical indices

auxiliary 
bond 
indices=

i1 i2
i3

T 1

T 2 T 3

e.g. N=3

T 4

 - 

( )

[Vidal]

being tensor field theories, GFTS reproduce the structure of very interesting TN states: 
random tensor networks (RTS)

Group Field Random Tensor Networks

|Mi = 1p
D
��1�2 |�1i ⌦ |�2i1 -  maximally entangled link states

tensors Tv are unit vectors chosen independently at random from their respective Hilbert 
spaces. the unique “uniform” unitarily invariant  distribution is induced by the Haar 
measure on the unitary group by acting on an arbitrarily chosen generating vector:

| i ⌘
O

<ij>

hMij |
NO

v

|Tvi

2 -  

|Tvi = U |0vi|0vi         (for arbitrary reference state            define                          with U unitary )     

Hayden et al.arXiv:1601.01694v1   F. Pastawski, B. Yoshida, D. Harlow and J. Preskill
Figure 3. Boundary @N of network N is divided into two parts A and B.

where P(⇡0
A
;N, d) is the permutation operator acting on the states in region A,

P(⇡0
A;N, d) =

NY

s=1

�
µ
([s+1]D)
A µ

(s)
A

(3.6)

and d is the dimension of the Hilbert space in the same region A.

The replica trick is useful because the Rényi entropy SN , which is easier to compute,

coincides with the von Neumann entropy of region A, and thus with the entanglement

entropy between regions A and B, in the limit Nrightarrow1

SEE(A) = lim
N!1

SN (A) (3.7)

3.2 S2 in RTN with Gauge Symmetry

As the first step, let us calculate the S2 for a give tensor network state | N i. The tensor

network state | N i is given by (2.32), which is in the Hilbert space of H@N . States can be

written in terms of index notation.

| N i ()  {�A}{�B} ⌘  AB (3.8)

O

n

|Tni ()

 
O

n

Tn

!

{�A}{�B}{�C}

⌘ TABC (3.9)

O

`

hM`| ()

 
O

`

M `

!

{�C}

⌘ MC (3.10)

So based on the definition (2.32), the tensor network state is rewritten as

 AB = MCTABC (3.11)

where we divide the boundary @N into two parts, labeled as A and B.

All links are internal links that contract with nodes. The density matrix corresponding

to  AB is

⇢
AABB

=  
AB
 AB (3.12)

– 20 –

In the large bond dimension limit, RTS saturate the 
TN entropy bound, reproducing the holographic Ryu 
Takanayagi entropy formula

S(A) ' log(D)|�A|

�A

v

3 -  

Quantum states in many-body systems conveniently encoded in tensor networks 
= tensors contracted by link maps, associated to graph 

Efficient encoding of entanglement properties

Saturate entropy bounds (RTN, in large bond limit)

Holographic features (use in AdS/CFT, ….)

e.g. Ryu-Takanayagi entropy formula

Bulk reconstruction in AdS/CFT

a series of attempts of space-time bulk geometry 
reconstruction from the structure of correlations of 
the boundary state

ΣA

ΣB

ɤA
Σ

Σ=ΣAҐΣBMd+2

Figure 2: Calculations of Entanglement Entropy in Surface/State Correspondence.

SΣ
A does not change under this deformation as is clear from (2.10), which is consistent

with the unitary evolution. Note that this unitary deformation of ΣA (denoted by Σ̂A) is

terminated when it reaches the extremal surface γΣ
A. This is because we need to keep the

closed surface Σ̂A ∪ΣB to be convex in order to define the reduced density matrix ρ(Σ̂A).

We can also argue that ρ(ΣA) does not change if we deform the surface ΣB with the same

constraint.

Note that if we apply these claims to the AdS/CFT correspondence and take Σ to

be the AdS boundary, then (2.10) is reduced to the holographic entanglement entropy

formula [25]. Therefore our proposal (2.10) can be regarded as a generalization of holo-

graphic entanglement entropy. For example, we can prove the strong subadditivity in the

same way as that in the holographic entanglement entropy [21, 26].

Now it is also intriguing to ask what is the quantum interpretation of the area of Σ

itself. Even though, Σ is not an extremal surface in general, we can divide Σ into infinitely

many small subregions, which are all well-approximated by extremal surfaces. In such a

small region, the geometry is approximated by a flat space and thus the extremal surfaces

are given by flat planes. This consideration and the proposed correspondence (2.10) lead

to the following relation:
∑

i

SΣ
Ai

=
A(Σ)

4GN
, (2.11)

where Ai describes the infinitesimally small portions of Σ such that Σ = ∪iAi andAi∩Aj =

φ. SΣ
Ai

is the entanglement when we trace out the complement of Ai inside Σ. It is useful

to note that the left hand side of (2.11) is always larger than or equal to the total von-

Neumann entropy for ρ(Σ) owing to the subadditivity relation.

We would like to call the left-hand side of (2.11) the effective entropy Seff(Σ). This

6

[Pastawski, Yoshida, Harlow Preskill]

SA =
Area(�A)

4GN

=>

[Van Raamsdonk 2009] [Cao Carroll Michalakis 2016]

gravitational theories are equivalent to non-gravitational theories defined as quantum 
many-body systems or quantum field theories: a dual non-gravitational theory lives on 
the boundary of its original gravitational spacetime

similar structural behaviour in AdS/CFT:

 holographic 
entanglement entropy

-

Ryu-Takayanagi 2015]  … [Hubeny, Rangamani] 

classical connectivity from quantum superposition Raamsdonk 2010
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eternal  AdS BH = 
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QIT toy models for the bulk/boundary 
correspondence: holographic quantum error- 
correcting codes
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and d is the dimension of the Hilbert space in the same region A.

The replica trick is useful because the Rényi entropy SN , which is easier to compute,

coincides with the von Neumann entropy of region A, and thus with the entanglement

entropy between regions A and B, in the limit Nrightarrow1

SEE(A) = lim
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SN (A) (3.7)

3.2 S2 in RTN with Gauge Symmetry

As the first step, let us calculate the S2 for a give tensor network state | N i. The tensor

network state | N i is given by (2.32), which is in the Hilbert space of H@N . States can be

written in terms of index notation.
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So based on the definition (2.32), the tensor network state is rewritten as
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to  AB is

⇢
AABB

=  
AB
 AB (3.12)
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SΣ
A does not change under this deformation as is clear from (2.10), which is consistent

with the unitary evolution. Note that this unitary deformation of ΣA (denoted by Σ̂A) is

terminated when it reaches the extremal surface γΣ
A. This is because we need to keep the

closed surface Σ̂A ∪ΣB to be convex in order to define the reduced density matrix ρ(Σ̂A).

We can also argue that ρ(ΣA) does not change if we deform the surface ΣB with the same

constraint.

Note that if we apply these claims to the AdS/CFT correspondence and take Σ to

be the AdS boundary, then (2.10) is reduced to the holographic entanglement entropy

formula [25]. Therefore our proposal (2.10) can be regarded as a generalization of holo-

graphic entanglement entropy. For example, we can prove the strong subadditivity in the

same way as that in the holographic entanglement entropy [21, 26].

Now it is also intriguing to ask what is the quantum interpretation of the area of Σ

itself. Even though, Σ is not an extremal surface in general, we can divide Σ into infinitely

many small subregions, which are all well-approximated by extremal surfaces. In such a

small region, the geometry is approximated by a flat space and thus the extremal surfaces

are given by flat planes. This consideration and the proposed correspondence (2.10) lead

to the following relation:
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Ai

is the entanglement when we trace out the complement of Ai inside Σ. It is useful

to note that the left hand side of (2.11) is always larger than or equal to the total von-

Neumann entropy for ρ(Σ) owing to the subadditivity relation.

We would like to call the left-hand side of (2.11) the effective entropy Seff(Σ). This
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GFT states as generalised tensor networks

Tensor Networks

In the tensor network methods, a quantum state        is described in terms of a set of 
tensors. Consider a lattice L made of N sites, where each site is described by a complex 
vector space     of finite dimension d.

| i =
dX

i1,i2,...,iN=1

( )i1,i2,...,iN |i1, i2, ..., iN i

( )i1,i2,...,iN = tTr

 
O

v

T (v)

!

a TN decomposition for        consists of a set of tensors          and a network pattern or 
graph characterised by a set of vertices and a set of directed edges

 - a pure state                        of the lattice can be expanded as  | i 2 V⌦N

where         denotes a basis of      for site s in L

| i

V

T (v)| i

|isi V

the tensor trace contracts all bond 
indices, leaving only the physical indices

auxiliary 
bond 
indices=

i1 i2
i3

T 1

T 2 T 3

e.g. N=3

T 4

 - 

( )

[Vidal]

being tensor field theories, GFTS reproduce the structure of very interesting TN states: 
random tensor networks (RTS)

Group Field Random Tensor Networks

|Mi = 1p
D
��1�2 |�1i ⌦ |�2i1 -  maximally entangled link states

tensors Tv are unit vectors chosen independently at random from their respective Hilbert 
spaces. the unique “uniform” unitarily invariant  distribution is induced by the Haar 
measure on the unitary group by acting on an arbitrarily chosen generating vector:

| i ⌘
O

<ij>

hMij |
NO

v

|Tvi

2 -  

|Tvi = U |0vi|0vi         (for arbitrary reference state            define                          with U unitary )     

Hayden et al.arXiv:1601.01694v1   F. Pastawski, B. Yoshida, D. Harlow and J. Preskill
Figure 3. Boundary @N of network N is divided into two parts A and B.

where P(⇡0
A
;N, d) is the permutation operator acting on the states in region A,

P(⇡0
A;N, d) =

NY

s=1

�
µ
([s+1]D)
A µ

(s)
A

(3.6)

and d is the dimension of the Hilbert space in the same region A.

The replica trick is useful because the Rényi entropy SN , which is easier to compute,

coincides with the von Neumann entropy of region A, and thus with the entanglement

entropy between regions A and B, in the limit Nrightarrow1

SEE(A) = lim
N!1

SN (A) (3.7)

3.2 S2 in RTN with Gauge Symmetry

As the first step, let us calculate the S2 for a give tensor network state | N i. The tensor

network state | N i is given by (2.32), which is in the Hilbert space of H@N . States can be

written in terms of index notation.

| N i ()  {�A}{�B} ⌘  AB (3.8)
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!
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⌘ MC (3.10)

So based on the definition (2.32), the tensor network state is rewritten as

 AB = MCTABC (3.11)

where we divide the boundary @N into two parts, labeled as A and B.

All links are internal links that contract with nodes. The density matrix corresponding

to  AB is

⇢
AABB

=  
AB
 AB (3.12)
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Spin networks (for fixed and equal spins) are a special 
case of tensor networks (with local gauge symmetry)

we can understand the wave-function on an open graph of V vertices or their dual 
polyhedra as a tensor network encoding the entanglement structure of the multi-
particle state

Multiparticle state as a tensor network state

<=>

�

gVg1

<=>

g1

. . .

�

�
�

|M`i = Mij |gii ⌦ |gji 2 H
⌦2

�

|��i ⌘
O

`2�

hM`|
VO

v

|�vi

�(gji ) (�)g1,g2,...,gV = tTr

 
VO

v=1

�(gi)v

!

. . .

construct a representation with auxiliary group fields

- 

- 

 glued by links convolution functions Mij

-  a V-particle states can be then decomposed as

Figure 2. A tensor network � is a set of tensors whose indices are contracted according to a
network pattern. A network pattern can be always represented as a graph, given by a set of nodes
(n) and links (`) connecting nodes. A link is called an internal link when it connects two di↵erent
nodes; while it is called a boundary link when it connects only one node. The number of links that
connect to a node is called the valence of the node..

To such a graph we can associate a generic wavefunction given by a function of d⇥ V

group elements,

�(gia) = �(g11, ..., g
d

1 , g
1
2, ..., g

d

2 , · · · , g
1
V
, ..., gd

V
) (2.19)

defined on the group space Gd⇥V /GV (V copies of Gd, quotiented by the isotropy group of

the single particle function '(v)(gi) at the each vertex); here the index a runs over the set

of vertices, while the index i still runs over the links attached to each vertex).

These functions are exactly like many-particles wave functions for point particles living

on the group manifold Gd, and having as classical phase space (T ⇤G)d (the classical phase

space of a single open spin network vertex or polyhedron).

Accordingly, a state |�i 2 HV ' L2[Gd⇥V /GV ] can be conveniently decomposed into

products of single-particle (single-vertex) states,

�(gai ) = hgai |�i =
X

�i,i=1...V

'�1...�V  �1(gi) · · · �V (gi) (2.20)

While the above decomposition is completely general, a special class of states can

be constructed in direct association with a graph or network �. The association works as

follows. Start from the d-valent graph with V disconnected components (open spin network

vertices) to which a generic V-body state of the theory is associated. A partially connected

d-valent graph can be constructed by choosing at least one edge i in a vertex a and gluing

it to one edge j of the vertex b, i.e. joining the two edges along their 1-valent vertices.

The final graph will be fully connected if all edges have been glued. Each pair of glued

edges {ai, bj} will identify a link L of the resulting (partially) connected graph. In the

spin representation, i.e. in terms of the basis of functions  �1(gi) · · · �V (gi), the gluing is

implemented by the identification of the spin labels ja
i
and jb

j
associated to the two edges

being glued and by the contraction of the corresponding vector indices ma

i
and mb

j
. In

other words, the corresponding wave functions for closed graphs can be decomposed in a

basis of closed spin network wave functions, obtained from the general product basis by

means of the same contractions:

��(g
a

i ) = hgai |��i =
X

�a,a=1...V

�
j
1
i ...j

V
i

�

" 
Y

L2�
�
j
a
i ,j

b
j
�
m

a
i ,m

b
j

!
 �1(gi) · · · �V (gi)

#
(2.21)
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Let’s consider the boundary state associated to the open spin network graph N

|�N i ⌘
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`2N
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n

|�ni 2
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`2@N
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Group Field Random Tensor Networks

the boundary density operator is a linear function of independent pure states of 
each tensor

 - 

⇢ = tr`

"
O

`2�

|M`ihM`|
VO

v

|�vih�v|
#

⇢̂A = trB [⇢]/tr[⇢]

to a subregion (A) of the boundary we associate a reduced state

 - 

A

Group field theory states are a field-theoretic generalization 
of random tensor networks - GFT dynamics defines 
probability measure

Dictionary: GFT states (many body wave-functions) as tensors networks
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djiD
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Once we turn o↵ the sum over all possible js, fix the representation labels and ask

them to be equal, generically Fourier transformed GFT fields ' j

{m}, are tensors of single

rank d, with discrete indices mi = {m1, . . . ,md} spanning a finite dimensional space. The
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Figure 2: Calculations of Entanglement Entropy in Surface/State Correspondence.

SΣ
A does not change under this deformation as is clear from (2.10), which is consistent

with the unitary evolution. Note that this unitary deformation of ΣA (denoted by Σ̂A) is

terminated when it reaches the extremal surface γΣ
A. This is because we need to keep the

closed surface Σ̂A ∪ΣB to be convex in order to define the reduced density matrix ρ(Σ̂A).

We can also argue that ρ(ΣA) does not change if we deform the surface ΣB with the same

constraint.

Note that if we apply these claims to the AdS/CFT correspondence and take Σ to

be the AdS boundary, then (2.10) is reduced to the holographic entanglement entropy

formula [25]. Therefore our proposal (2.10) can be regarded as a generalization of holo-

graphic entanglement entropy. For example, we can prove the strong subadditivity in the

same way as that in the holographic entanglement entropy [21, 26].

Now it is also intriguing to ask what is the quantum interpretation of the area of Σ

itself. Even though, Σ is not an extremal surface in general, we can divide Σ into infinitely

many small subregions, which are all well-approximated by extremal surfaces. In such a

small region, the geometry is approximated by a flat space and thus the extremal surfaces

are given by flat planes. This consideration and the proposed correspondence (2.10) lead

to the following relation:
∑

i

SΣ
Ai

=
A(Σ)

4GN
, (2.11)

where Ai describes the infinitesimally small portions of Σ such that Σ = ∪iAi andAi∩Aj =

φ. SΣ
Ai

is the entanglement when we trace out the complement of Ai inside Σ. It is useful

to note that the left hand side of (2.11) is always larger than or equal to the total von-

Neumann entropy for ρ(Σ) owing to the subadditivity relation.

We would like to call the left-hand side of (2.11) the effective entropy Seff(Σ). This
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Figure 2. A tensor network � is a set of tensors whose indices are contracted according to a
network pattern. A network pattern can be always represented as a graph, given by a set of nodes
(n) and links (`) connecting nodes. A link is called an internal link when it connects two di↵erent
nodes; while it is called a boundary link when it connects only one node. The number of links that
connect to a node is called the valence of the node..

To such a graph we can associate a generic wavefunction given by a function of d⇥ V
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defined on the group space Gd⇥V /GV (V copies of Gd, quotiented by the isotropy group of

the single particle function '(v)(gi) at the each vertex); here the index a runs over the set

of vertices, while the index i still runs over the links attached to each vertex).

These functions are exactly like many-particles wave functions for point particles living

on the group manifold Gd, and having as classical phase space (T ⇤G)d (the classical phase

space of a single open spin network vertex or polyhedron).

Accordingly, a state |�i 2 HV ' L2[Gd⇥V /GV ] can be conveniently decomposed into

products of single-particle (single-vertex) states,
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X
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'�1...�V  �1(gi) · · · �V (gi) (2.20)

While the above decomposition is completely general, a special class of states can

be constructed in direct association with a graph or network �. The association works as

follows. Start from the d-valent graph with V disconnected components (open spin network

vertices) to which a generic V-body state of the theory is associated. A partially connected

d-valent graph can be constructed by choosing at least one edge i in a vertex a and gluing

it to one edge j of the vertex b, i.e. joining the two edges along their 1-valent vertices.

The final graph will be fully connected if all edges have been glued. Each pair of glued

edges {ai, bj} will identify a link L of the resulting (partially) connected graph. In the

spin representation, i.e. in terms of the basis of functions  �1(gi) · · · �V (gi), the gluing is

implemented by the identification of the spin labels ja
i
and jb

j
associated to the two edges

being glued and by the contraction of the corresponding vector indices ma

i
and mb

j
. In

other words, the corresponding wave functions for closed graphs can be decomposed in a

basis of closed spin network wave functions, obtained from the general product basis by

means of the same contractions:
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Let’s consider the boundary state associated to the open spin network graph N

|�N i ⌘

O

`2N
hM`|

VO

n

|�ni 2

O

`2@N
H`

Group Field Random Tensor Networks

the boundary density operator is a linear function of independent pure states of 
each tensor

 - 

⇢ = tr`

"
O

`2�

|M`ihM`|
VO

v

|�vih�v|
#

⇢̂A = trB [⇢]/tr[⇢]

to a subregion (A) of the boundary we associate a reduced state

 - 

A

Towards Ryu-Takanayagi formula in full QG

being tensor field theories, GFTS reproduce the structure of very interesting TN states: 
random tensor networks (RTS)

Group Field Random Tensor Networks

|Mi = 1p
D
��1�2 |�1i ⌦ |�2i1 -  maximally entangled link states

tensors Tv are unit vectors chosen independently at random from their respective Hilbert 
spaces. the unique “uniform” unitarily invariant  distribution is induced by the Haar 
measure on the unitary group by acting on an arbitrarily chosen generating vector:

| i ⌘
O

<ij>

hMij |
NO

v

|Tvi

2 -  

|Tvi = U |0vi|0vi         (for arbitrary reference state            define                          with U unitary )     

Hayden et al.arXiv:1601.01694v1   F. Pastawski, B. Yoshida, D. Harlow and J. Preskill
Figure 3. Boundary @N of network N is divided into two parts A and B.
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and d is the dimension of the Hilbert space in the same region A.

The replica trick is useful because the Rényi entropy SN , which is easier to compute,

coincides with the von Neumann entropy of region A, and thus with the entanglement

entropy between regions A and B, in the limit Nrightarrow1

SEE(A) = lim
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3.2 S2 in RTN with Gauge Symmetry

As the first step, let us calculate the S2 for a give tensor network state | N i. The tensor

network state | N i is given by (2.32), which is in the Hilbert space of H@N . States can be

written in terms of index notation.
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So based on the definition (2.32), the tensor network state is rewritten as
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where we divide the boundary @N into two parts, labeled as A and B.
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defined on the group space Gd⇥V /GV (V copies of Gd, quotiented by the isotropy group of

the single particle function '(v)(gi) at the each vertex); here the index a runs over the set

of vertices, while the index i still runs over the links attached to each vertex).

These functions are exactly like many-particles wave functions for point particles living

on the group manifold Gd, and having as classical phase space (T ⇤G)d (the classical phase

space of a single open spin network vertex or polyhedron).

Accordingly, a state |�i 2 HV ' L2[Gd⇥V /GV ] can be conveniently decomposed into

products of single-particle (single-vertex) states,

�(gai ) = hgai |�i =
X
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'�1...�V  �1(gi) · · · �V (gi) (2.20)

While the above decomposition is completely general, a special class of states can

be constructed in direct association with a graph or network �. The association works as

follows. Start from the d-valent graph with V disconnected components (open spin network

vertices) to which a generic V-body state of the theory is associated. A partially connected

d-valent graph can be constructed by choosing at least one edge i in a vertex a and gluing

it to one edge j of the vertex b, i.e. joining the two edges along their 1-valent vertices.

The final graph will be fully connected if all edges have been glued. Each pair of glued

edges {ai, bj} will identify a link L of the resulting (partially) connected graph. In the

spin representation, i.e. in terms of the basis of functions  �1(gi) · · · �V (gi), the gluing is

implemented by the identification of the spin labels ja
i
and jb

j
associated to the two edges

being glued and by the contraction of the corresponding vector indices ma

i
and mb

j
. In

other words, the corresponding wave functions for closed graphs can be decomposed in a

basis of closed spin network wave functions, obtained from the general product basis by

means of the same contractions:

��(g
a

i ) = hgai |��i =
X

�a,a=1...V

�
j
1
i ...j

V
i

�

" 
Y

L2�
�
j
a
i ,j

b
j
�
m

a
i ,m

b
j

!
 �1(gi) · · · �V (gi)

#
(2.21)

– 10 –
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defined on the group space Gd⇥V /GV (V copies of Gd, quotiented by the isotropy group of

the single particle function '(v)(gi) at the each vertex); here the index a runs over the set

of vertices, while the index i still runs over the links attached to each vertex).

These functions are exactly like many-particles wave functions for point particles living

on the group manifold Gd, and having as classical phase space (T ⇤G)d (the classical phase

space of a single open spin network vertex or polyhedron).

Accordingly, a state |�i 2 HV ' L2[Gd⇥V /GV ] can be conveniently decomposed into

products of single-particle (single-vertex) states,
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While the above decomposition is completely general, a special class of states can

be constructed in direct association with a graph or network �. The association works as

follows. Start from the d-valent graph with V disconnected components (open spin network

vertices) to which a generic V-body state of the theory is associated. A partially connected

d-valent graph can be constructed by choosing at least one edge i in a vertex a and gluing

it to one edge j of the vertex b, i.e. joining the two edges along their 1-valent vertices.

The final graph will be fully connected if all edges have been glued. Each pair of glued

edges {ai, bj} will identify a link L of the resulting (partially) connected graph. In the

spin representation, i.e. in terms of the basis of functions  �1(gi) · · · �V (gi), the gluing is

implemented by the identification of the spin labels ja
i
and jb

j
associated to the two edges

being glued and by the contraction of the corresponding vector indices ma
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and mb
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. In

other words, the corresponding wave functions for closed graphs can be decomposed in a

basis of closed spin network wave functions, obtained from the general product basis by
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defined on the group space Gd⇥V /GV (V copies of Gd, quotiented by the isotropy group of

the single particle function '(v)(gi) at the each vertex); here the index a runs over the set

of vertices, while the index i still runs over the links attached to each vertex).

These functions are exactly like many-particles wave functions for point particles living

on the group manifold Gd, and having as classical phase space (T ⇤G)d (the classical phase

space of a single open spin network vertex or polyhedron).

Accordingly, a state |�i 2 HV ' L2[Gd⇥V /GV ] can be conveniently decomposed into

products of single-particle (single-vertex) states,

�(gai ) = hgai |�i =
X

�i,i=1...V

'�1...�V  �1(gi) · · · �V (gi) (2.20)

While the above decomposition is completely general, a special class of states can

be constructed in direct association with a graph or network �. The association works as

follows. Start from the d-valent graph with V disconnected components (open spin network

vertices) to which a generic V-body state of the theory is associated. A partially connected

d-valent graph can be constructed by choosing at least one edge i in a vertex a and gluing

it to one edge j of the vertex b, i.e. joining the two edges along their 1-valent vertices.

The final graph will be fully connected if all edges have been glued. Each pair of glued

edges {ai, bj} will identify a link L of the resulting (partially) connected graph. In the

spin representation, i.e. in terms of the basis of functions  �1(gi) · · · �V (gi), the gluing is

implemented by the identification of the spin labels ja
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associated to the two edges

being glued and by the contraction of the corresponding vector indices ma
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Let’s consider the boundary state associated to the open spin network graph N
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and d is the dimension of the Hilbert space in the same region A.

The replica trick is useful because the Rényi entropy SN , which is easier to compute,

coincides with the von Neumann entropy of region A, and thus with the entanglement

entropy between regions A and B, in the limit Nrightarrow1

SEE(A) = lim
N!1

SN (A) (3.7)

3.2 S2 in RTN with Gauge Symmetry

As the first step, let us calculate the S2 for a give tensor network state | N i. The tensor

network state | N i is given by (2.32), which is in the Hilbert space of H@N . States can be

written in terms of index notation.
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So based on the definition (2.32), the tensor network state is rewritten as

 AB = MCTABC (3.11)

where we divide the boundary @N into two parts, labeled as A and B.

All links are internal links that contract with nodes. The density matrix corresponding

to  AB is
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defined on the group space Gd⇥V /GV (V copies of Gd, quotiented by the isotropy group of

the single particle function '(v)(gi) at the each vertex); here the index a runs over the set

of vertices, while the index i still runs over the links attached to each vertex).

These functions are exactly like many-particles wave functions for point particles living

on the group manifold Gd, and having as classical phase space (T ⇤G)d (the classical phase

space of a single open spin network vertex or polyhedron).

Accordingly, a state |�i 2 HV ' L2[Gd⇥V /GV ] can be conveniently decomposed into

products of single-particle (single-vertex) states,
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While the above decomposition is completely general, a special class of states can

be constructed in direct association with a graph or network �. The association works as

follows. Start from the d-valent graph with V disconnected components (open spin network

vertices) to which a generic V-body state of the theory is associated. A partially connected

d-valent graph can be constructed by choosing at least one edge i in a vertex a and gluing

it to one edge j of the vertex b, i.e. joining the two edges along their 1-valent vertices.

The final graph will be fully connected if all edges have been glued. Each pair of glued

edges {ai, bj} will identify a link L of the resulting (partially) connected graph. In the

spin representation, i.e. in terms of the basis of functions  �1(gi) · · · �V (gi), the gluing is

implemented by the identification of the spin labels ja
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and jb
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associated to the two edges

being glued and by the contraction of the corresponding vector indices ma
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other words, the corresponding wave functions for closed graphs can be decomposed in a
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defined on the group space Gd⇥V /GV (V copies of Gd, quotiented by the isotropy group of

the single particle function '(v)(gi) at the each vertex); here the index a runs over the set

of vertices, while the index i still runs over the links attached to each vertex).

These functions are exactly like many-particles wave functions for point particles living

on the group manifold Gd, and having as classical phase space (T ⇤G)d (the classical phase

space of a single open spin network vertex or polyhedron).

Accordingly, a state |�i 2 HV ' L2[Gd⇥V /GV ] can be conveniently decomposed into

products of single-particle (single-vertex) states,
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be constructed in direct association with a graph or network �. The association works as

follows. Start from the d-valent graph with V disconnected components (open spin network

vertices) to which a generic V-body state of the theory is associated. A partially connected

d-valent graph can be constructed by choosing at least one edge i in a vertex a and gluing

it to one edge j of the vertex b, i.e. joining the two edges along their 1-valent vertices.

The final graph will be fully connected if all edges have been glued. Each pair of glued

edges {ai, bj} will identify a link L of the resulting (partially) connected graph. In the

spin representation, i.e. in terms of the basis of functions  �1(gi) · · · �V (gi), the gluing is
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defined on the group space Gd⇥V /GV (V copies of Gd, quotiented by the isotropy group of

the single particle function '(v)(gi) at the each vertex); here the index a runs over the set
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edges {ai, bj} will identify a link L of the resulting (partially) connected graph. In the
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and jb

j
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. In
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Towards Ryu-Takanayagi formula in full QG
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and d is the dimension of the Hilbert space in the same region A.

The replica trick is useful because the Rényi entropy SN , which is easier to compute,

coincides with the von Neumann entropy of region A, and thus with the entanglement

entropy between regions A and B, in the limit Nrightarrow1
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3.2 S2 in RTN with Gauge Symmetry

As the first step, let us calculate the S2 for a give tensor network state | N i. The tensor

network state | N i is given by (2.32), which is in the Hilbert space of H@N . States can be

written in terms of index notation.
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So based on the definition (2.32), the tensor network state is rewritten as

 AB = MCTABC (3.11)

where we divide the boundary @N into two parts, labeled as A and B.

All links are internal links that contract with nodes. The density matrix corresponding

to  AB is

⇢
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– 20 –

In the large bond dimension limit, RTS saturate the 
TN entropy bound, reproducing the holographic Ryu 
Takanayagi entropy formula

S(A) ' log(D)|�A|

�A

v

3 -  
(large) open spin network GFT state (written as random tensor network)


Figure 2. A tensor network � is a set of tensors whose indices are contracted according to a
network pattern. A network pattern can be always represented as a graph, given by a set of nodes
(n) and links (`) connecting nodes. A link is called an internal link when it connects two di↵erent
nodes; while it is called a boundary link when it connects only one node. The number of links that
connect to a node is called the valence of the node..

To such a graph we can associate a generic wavefunction given by a function of d⇥ V

group elements,

�(gia) = �(g11, ..., g
d

1 , g
1
2, ..., g

d

2 , · · · , g
1
V
, ..., gd

V
) (2.19)

defined on the group space Gd⇥V /GV (V copies of Gd, quotiented by the isotropy group of

the single particle function '(v)(gi) at the each vertex); here the index a runs over the set

of vertices, while the index i still runs over the links attached to each vertex).

These functions are exactly like many-particles wave functions for point particles living

on the group manifold Gd, and having as classical phase space (T ⇤G)d (the classical phase

space of a single open spin network vertex or polyhedron).

Accordingly, a state |�i 2 HV ' L2[Gd⇥V /GV ] can be conveniently decomposed into

products of single-particle (single-vertex) states,

�(gai ) = hgai |�i =
X

�i,i=1...V

'�1...�V  �1(gi) · · · �V (gi) (2.20)

While the above decomposition is completely general, a special class of states can

be constructed in direct association with a graph or network �. The association works as

follows. Start from the d-valent graph with V disconnected components (open spin network

vertices) to which a generic V-body state of the theory is associated. A partially connected

d-valent graph can be constructed by choosing at least one edge i in a vertex a and gluing

it to one edge j of the vertex b, i.e. joining the two edges along their 1-valent vertices.
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spin representation, i.e. in terms of the basis of functions  �1(gi) · · · �V (gi), the gluing is

implemented by the identification of the spin labels ja
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of vertices, while the index i still runs over the links attached to each vertex).

These functions are exactly like many-particles wave functions for point particles living

on the group manifold Gd, and having as classical phase space (T ⇤G)d (the classical phase
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follows. Start from the d-valent graph with V disconnected components (open spin network

vertices) to which a generic V-body state of the theory is associated. A partially connected

d-valent graph can be constructed by choosing at least one edge i in a vertex a and gluing

it to one edge j of the vertex b, i.e. joining the two edges along their 1-valent vertices.

The final graph will be fully connected if all edges have been glued. Each pair of glued

edges {ai, bj} will identify a link L of the resulting (partially) connected graph. In the

spin representation, i.e. in terms of the basis of functions  �1(gi) · · · �V (gi), the gluing is

implemented by the identification of the spin labels ja
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associated to the two edges
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Goal: entanglement entropy between sub-regions A and B

Group Field Random Tensor Networks

we then look for the entanglement entropy of A/B:

e�SN (A) = tr[⇢NA ]/(tr[⇢])N ⌘ ZA/Z0

- 
KEY 1: calculating the Rényi entropy is hard, however  we can use the random 
character of the field to calculate the expectation value of the Rényi: expand in the 
fluctuation

KEY 2: fluctuations are suppressed in the limit of large bond dimension  

random states in high-dimensional bipartite systems: “concentration of measure” 
phenomenon applies, meaning that on a large-probability set macroscopic parameters 
are close to their expectation values (bond/group dimension, => continuum limit)
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1

1�N
log tr[⇢̂NA ]
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from Reny entropy (via replica trick)

computation made easier by:


• random character: calculate expectation value


• large bond approx.: fluctuations are suppressed

Chirco, DO, Zhang, ‘17Hayden et al. ‘16



being tensor field theories, GFTS reproduce the structure of very interesting TN states: 
random tensor networks (RTS)
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|Mi = 1p
D
��1�2 |�1i ⌦ |�2i1 -  maximally entangled link states

tensors Tv are unit vectors chosen independently at random from their respective Hilbert 
spaces. the unique “uniform” unitarily invariant  distribution is induced by the Haar 
measure on the unitary group by acting on an arbitrarily chosen generating vector:
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and d is the dimension of the Hilbert space in the same region A.

The replica trick is useful because the Rényi entropy SN , which is easier to compute,

coincides with the von Neumann entropy of region A, and thus with the entanglement

entropy between regions A and B, in the limit Nrightarrow1

SEE(A) = lim
N!1

SN (A) (3.7)

3.2 S2 in RTN with Gauge Symmetry

As the first step, let us calculate the S2 for a give tensor network state | N i. The tensor

network state | N i is given by (2.32), which is in the Hilbert space of H@N . States can be

written in terms of index notation.
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So based on the definition (2.32), the tensor network state is rewritten as

 AB = MCTABC (3.11)

where we divide the boundary @N into two parts, labeled as A and B.

All links are internal links that contract with nodes. The density matrix corresponding

to  AB is

⇢
AABB

=  
AB
 AB (3.12)
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In the large bond dimension limit, RTS saturate the 
TN entropy bound, reproducing the holographic Ryu 
Takanayagi entropy formula
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Towards Ryu-Takanayagi formula in full QG

Group Field Random Tensor Networks

we then look for the entanglement entropy of A/B:
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KEY 1: calculating the Rényi entropy is hard, however  we can use the random 
character of the field to calculate the expectation value of the Rényi: expand in the 
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random states in high-dimensional bipartite systems: “concentration of measure” 
phenomenon applies, meaning that on a large-probability set macroscopic parameters 
are close to their expectation values (bond/group dimension, => continuum limit)

- 

SEE = �tr[⇢̂A log ⇢̂A] = lim
N!1

SN (A) =
1

1�N
log tr[⇢̂NA ]

( Rényi via replika trick )

- 

where

SN (A) = �log
ZA + �ZA

Z0 + �Z0
= � log

ZA

Z0
+ ' SN (A)

• state written in GFT language as random tensor network 


• density operator associated with GFT observable (N-point function)


• expectation value computed via path integral of chosen GFT model 
(chosen probability measure)
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the average over the N-replica of the wave functions (generalised tensors) associated 
to each network vertex can be interpreted as a GFT N-point correlation function
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in the standard field theory formalism we define the averaging via the path 
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coincides with the von Neumann entropy of region A, and thus with the entanglement

entropy between regions A and B, in the limit Nrightarrow1
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we then look for the entanglement entropy of A/B:
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KEY 1: calculating the Rényi entropy is hard, however  we can use the random 
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consider simple GFT model for topological BF theory in perturbative expansion around trivial gaussian measure 
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being tensor field theories, GFTS reproduce the structure of very interesting TN states: 
random tensor networks (RTS)

Group Field Random Tensor Networks

|Mi = 1p
D
��1�2 |�1i ⌦ |�2i1 -  maximally entangled link states

tensors Tv are unit vectors chosen independently at random from their respective Hilbert 
spaces. the unique “uniform” unitarily invariant  distribution is induced by the Haar 
measure on the unitary group by acting on an arbitrarily chosen generating vector:
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Figure 3. Boundary @N of network N is divided into two parts A and B.
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and d is the dimension of the Hilbert space in the same region A.

The replica trick is useful because the Rényi entropy SN , which is easier to compute,

coincides with the von Neumann entropy of region A, and thus with the entanglement

entropy between regions A and B, in the limit Nrightarrow1

SEE(A) = lim
N!1

SN (A) (3.7)

3.2 S2 in RTN with Gauge Symmetry

As the first step, let us calculate the S2 for a give tensor network state | N i. The tensor

network state | N i is given by (2.32), which is in the Hilbert space of H@N . States can be

written in terms of index notation.
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So based on the definition (2.32), the tensor network state is rewritten as

 AB = MCTABC (3.11)

where we divide the boundary @N into two parts, labeled as A and B.

All links are internal links that contract with nodes. The density matrix corresponding

to  AB is

⇢
AABB

=  
AB
 AB (3.12)
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In the large bond dimension limit, RTS saturate the 
TN entropy bound, reproducing the holographic Ryu 
Takanayagi entropy formula
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Towards Ryu-Takanayagi formula in full QG

Group Field Random Tensor Networks

we then look for the entanglement entropy of A/B:

e�SN (A) = tr[⇢NA ]/(tr[⇢])N ⌘ ZA/Z0

- 
KEY 1: calculating the Rényi entropy is hard, however  we can use the random 
character of the field to calculate the expectation value of the Rényi: expand in the 
fluctuation

KEY 2: fluctuations are suppressed in the limit of large bond dimension  

random states in high-dimensional bipartite systems: “concentration of measure” 
phenomenon applies, meaning that on a large-probability set macroscopic parameters 
are close to their expectation values (bond/group dimension, => continuum limit)
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we can get SN (A) by computing the expectation values:
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——> entropy from evaluation of sum over lattice BF amplitudes (on “bulk lattices”) 
- result dominated by most divergent ones 
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which can be understood as the Ryu-Takayanagi formula in a GFT context, with the 
same interpretation for the area of the minimal surface that we have mentioned in 
the previous section, concerning the tensor network techniques.

Finally, the Nth order Rényi entropy SN is then:

e(1�N)SN =
ZN

ZN

0

= [�(1)](1�N)min(#`2@AB
) ⇥1 +O(��1(1)) +O(�)

⇤
. (4.71)

When N goes to 1, SN becomes the entanglement entropy SEE. The leading term of the

entanglement entropy SEE is therefore

SEE = min(#`2@AB ) ln �(1) , (4.72)

which can be understood as the Ryu-Takayanagi formula in a GFT context, with the same

interpretation for the area of the minimal surface that we have mentioned in the previous

section, concerning the tensor network techniques.

Before moving on to a di↵erent derivation of the same result, we want to clarify the inter-

pretation of this calculation.

The definition of the expectation value (4.5) in the GFT language shows that the expo-

nential of SN can be interpreted as a GFT 2N -point function, at least within the limits of

the approximation made, focusing on the average over group field functions at each node,

without recasting the whole generalized tensor network as a GFT correlation function. As

shown in previous sections, the GFT amplitudes can in turn be written, by standard per-

turbative expansion, as a sum of Feynman amplitudes associated to Feynman diagrams,

each of which corresponds to a di↵erent discretized “space-time”with fixed boundary, with

the Feynman amplitude defining (for quantum gravity models) a lattice path integral for

gravity discretised on the corresponding cellular complex. This allows a tentative (and par-

tial) interpretation of the entropy formula we have derived, in geometric spatiotemporal

terms. It implies, in fact, that, in the calculation of the entropy, not only the information

of a time-slice of a space-time is considered, as encoded in a given network, but also its

full quantum dynamics. This, at least, is true when the complete GFT partition function

(for quantum gravity models) is employed in the computation of the entropy. The leading

term, the free GFT amplitude, captures only a sector of that full quantum dynamics. With

the specific (trivial) choice of kinetic term we have used, the quantum dynamics can at

best correspond to (summing over) static space-times. When N goes to 1, in particular,

the amplitude becomes the trivial propagation of GFT states, with any given network

propagating to itself. This corresponds exactly to the context (static space-time) in which

the Ryu-Takayanagi formula is usually derived. In other words, our calculation provides a

realization of the Ryu-Takayanagi formula, at least in one extremely simple case, within the

full dynamics of a non-perturbative approach to quantum gravity, the group field theory

formalism, which can also be seen as a di↵erent definition of loop quantum gravity. Our

result also shows that the same formalism allows to compute non-perturbative quantum

gravity corrections to the Ryu-Takayanagi formula, by including the contributions from

the GFT interaction term into the amplitude (as well as considering di↵erent choices for

the GFT kinetic term).
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When N goes to 1, SN becomes the entanglement entropy SEE. The leading term of the 
entanglement entropy SEE  is

Figure 3. Boundary @N of network N is divided into two parts A and B.
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and d is the dimension of the Hilbert space in the same region A.

The replica trick is useful because the Rényi entropy SN , which is easier to compute,

coincides with the von Neumann entropy of region A, and thus with the entanglement

entropy between regions A and B, in the limit Nrightarrow1

SEE(A) = lim
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SN (A) (3.7)

3.2 S2 in RTN with Gauge Symmetry

As the first step, let us calculate the S2 for a give tensor network state | N i. The tensor
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So based on the definition (2.32), the tensor network state is rewritten as

 AB = MCTABC (3.11)

where we divide the boundary @N into two parts, labeled as A and B.

All links are internal links that contract with nodes. The density matrix corresponding

to  AB is

⇢
AABB

=  
AB
 AB (3.12)
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Path integral averaging for the free theory

the interaction kernel will generally lead to non-trivial bulk corrections!

A B
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Mingyi’s talk later!

result:
entropy proportional to area of minimal bulk surface 
(Ryu-Takanayagi-like formula) 
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to each network vertex can be interpreted as a GFT N-point correlation function

since
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we can get SN (A) by computing the expectation values:

in the standard field theory formalism we define the averaging via the path 
integral of some GFT model

E
⇥
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⇤
⌘

Z
[D�][D�] f [�,�] e�S[�,�]

permutation operator 
acting on the states in A

-

-

-
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+ assuming factorised state

consider simple GFT model for topological BF theory in perturbative expansion around trivial gaussian measure 
——> entropy from evaluation of sum over lattice BF amplitudes (on “bulk lattices”) 
- result dominated by most divergent ones 

which can be understood as the Ryu-Takayanagi formula in a GFT context, with the 
same interpretation for the area of the minimal surface that we have mentioned in 
the previous section, concerning the tensor network techniques.

Finally, the Nth order Rényi entropy SN is then:

e(1�N)SN =
ZN

ZN

0

= [�(1)](1�N)min(#`2@AB
) ⇥1 +O(��1(1)) +O(�)

⇤
. (4.71)

When N goes to 1, SN becomes the entanglement entropy SEE. The leading term of the

entanglement entropy SEE is therefore

SEE = min(#`2@AB ) ln �(1) , (4.72)

which can be understood as the Ryu-Takayanagi formula in a GFT context, with the same

interpretation for the area of the minimal surface that we have mentioned in the previous

section, concerning the tensor network techniques.

Before moving on to a di↵erent derivation of the same result, we want to clarify the inter-

pretation of this calculation.

The definition of the expectation value (4.5) in the GFT language shows that the expo-

nential of SN can be interpreted as a GFT 2N -point function, at least within the limits of

the approximation made, focusing on the average over group field functions at each node,

without recasting the whole generalized tensor network as a GFT correlation function. As

shown in previous sections, the GFT amplitudes can in turn be written, by standard per-

turbative expansion, as a sum of Feynman amplitudes associated to Feynman diagrams,

each of which corresponds to a di↵erent discretized “space-time”with fixed boundary, with

the Feynman amplitude defining (for quantum gravity models) a lattice path integral for

gravity discretised on the corresponding cellular complex. This allows a tentative (and par-

tial) interpretation of the entropy formula we have derived, in geometric spatiotemporal

terms. It implies, in fact, that, in the calculation of the entropy, not only the information

of a time-slice of a space-time is considered, as encoded in a given network, but also its

full quantum dynamics. This, at least, is true when the complete GFT partition function

(for quantum gravity models) is employed in the computation of the entropy. The leading

term, the free GFT amplitude, captures only a sector of that full quantum dynamics. With

the specific (trivial) choice of kinetic term we have used, the quantum dynamics can at

best correspond to (summing over) static space-times. When N goes to 1, in particular,

the amplitude becomes the trivial propagation of GFT states, with any given network

propagating to itself. This corresponds exactly to the context (static space-time) in which

the Ryu-Takayanagi formula is usually derived. In other words, our calculation provides a

realization of the Ryu-Takayanagi formula, at least in one extremely simple case, within the

full dynamics of a non-perturbative approach to quantum gravity, the group field theory

formalism, which can also be seen as a di↵erent definition of loop quantum gravity. Our

result also shows that the same formalism allows to compute non-perturbative quantum

gravity corrections to the Ryu-Takayanagi formula, by including the contributions from

the GFT interaction term into the amplitude (as well as considering di↵erent choices for

the GFT kinetic term).
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When N goes to 1, SN becomes the entanglement entropy SEE. The leading term of the 
entanglement entropy SEE  is

Figure 3. Boundary @N of network N is divided into two parts A and B.

where P(⇡0
A
;N, d) is the permutation operator acting on the states in region A,

P(⇡0
A;N, d) =

NY

s=1

�
µ
([s+1]D)
A µ

(s)
A

(3.6)

and d is the dimension of the Hilbert space in the same region A.

The replica trick is useful because the Rényi entropy SN , which is easier to compute,

coincides with the von Neumann entropy of region A, and thus with the entanglement

entropy between regions A and B, in the limit Nrightarrow1

SEE(A) = lim
N!1

SN (A) (3.7)

3.2 S2 in RTN with Gauge Symmetry

As the first step, let us calculate the S2 for a give tensor network state | N i. The tensor

network state | N i is given by (2.32), which is in the Hilbert space of H@N . States can be

written in terms of index notation.

| N i ()  {�A}{�B} ⌘  AB (3.8)

O

n

|Tni ()
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!

{�A}{�B}{�C}

⌘ TABC (3.9)

O

`

hM`| ()

 
O

`

M `

!

{�C}

⌘ MC (3.10)

So based on the definition (2.32), the tensor network state is rewritten as

 AB = MCTABC (3.11)

where we divide the boundary @N into two parts, labeled as A and B.

All links are internal links that contract with nodes. The density matrix corresponding

to  AB is

⇢
AABB

=  
AB
 AB (3.12)
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�A

Path integral averaging for the free theory

the interaction kernel will generally lead to non-trivial bulk corrections!

A B

—
A B

—
tr[⇢]2

A B

—
A B

—

4-body

Mingyi’s talk later!

result:
entropy proportional to area of minimal bulk surface 
(Ryu-Takanayagi-like formula) 

can compute non-perturbative QG corrections…..

Chirco, DO, Zhang, ‘17Hayden et al. ‘16

Freidel, Gurau, DO ’09, Bonzom, Smerlak ’10-’12 



Continuum limit 
of discrete quantum gravity

via (functional) GFT renormalization
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Simplicial path integral for quantum gravity
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defining full simplicial path integral for quantum gravity = defining full GFT path integral for suitable model

new tools, thanks to QFT embedding, for defining simplicial gravity path integral

new perspective:

• focus on QFT generating sum over triangulations, rather than sum itself

• look for approximations which implicitly incorporate infinite sum over discrete structures

continuum limit of simplicial gravity path integral ~  RG flow of GFT model



Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool

for taking into account the physics of more and more d.o.f.s 

need to understand effective dynamics at different “GFT scales”: 
RG flow of effective actions & phase structure & phase transitions Koslowski, ’07; DO, ‘07

many results in related formalisms:

• renormalization in SF models (~ lattice gauge theories)

• different (kinematical) phases in LQG

• phase diagrams in (causal) dynamical triangulations

• renormalization and phase diagram of tensor models

Dittrich, Bahr, Steinhaus, Martin-Benito, ……

Ashtekar-Lewandowski, Koslowski-Sahlmann, Dittrich-Geiller)

Ambjorn, Loll, Jurkiewicz, …..

Eichhorn, Koslowski, Ben Geloun, Bonzom, ….



GFT renormalisation - general scheme

general strategy: 
treat GFTs as ordinary QFTs defined on Lie group manifold 
use group structures (Killing form, topology, etc) to define notion of scale and to set up mode integration
subtleties of quantum gravity context at the level of interpretation

scales:   
  defined by propagator: e.g. spectrum of Laplacian on G = indexed by group representations

Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

S(',') =
1
2

Z
[dgi]'(gi)K(gi)'(gi) +

�

D!

Z
[dgia]'(gi1)....'(ḡiD)V(gia, ḡiD) + c.c.

• need to have control over “theory space” (e.g. via symmetries)

• main difficulty:
controlling the combinatorics of GFT Feynman diagrams 
need to adapt/redefine many QFT notions: connectedness, subgraph contraction, Wick ordering, ….. 

A. Kegeles, DO, ’15,’16

Abstract notion of scale

Scales in space-time based QFTs: energy. Not available in a background
independent context.

In Matrix/Tensor Models (Ti1,...,id |ik 2 {1, . . . ,N}): size N of the tensors viewed as
a cut-o↵.

’UV’ scales ⌘ large ik ;
’IR’ scales ⌘ small ik .

One possible generalization to GFT: eigenvalues of
P
`
�` [Ben Geloun, Bonzom ’11; Ben

Geloun, Rivasseau ’11]. For instance, for a field '(g1, . . . , gd), with gk 2 U(1) or SU(2):

scale =
dX

`=1

p2

` . ⇤2 or
dX

`=1

j`(j` + 1) . ⇤2

’UV’ ⌘ large momenta |p`| or spins j`;
’IR’ ⌘ small momenta |p`| spins j`.

Natural flow from a large cut-o↵ on the spins to a smaller one: not inconsistent
with continuum limit in LQG, despite the fact that large spins means large area.

Sylvain Carrozza (CPT) GFT and the Renormalization Group QGP 2015 14 / 32



GFT Renormalization: geometric interpretation?
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GFT Renormalization: geometric interpretation?

b b

b

b

1

2

3

4

N
arguments of GFT field: bi 2 su(2) gravity case: d=4

| b | ~  J = irrep of SU(2) ~  “area of triangles”

“geometric” interpretation?

RG flow from large areas to small areas?

geometric intepretation?

• CAUTION in interpreting things geometrically outside continuum geometric approx.

• expect “physical” continuum areas   A ~ < J > < n >

• expect proper continuum geometric interpretation (and effective metric field) 

for  < J >  small,  < n >  large,  A  finite (not too small)

• from continuum geometric perspective, large areas are result of coarse graining of microscopic dofs 

from LQG
from Regge calculus



Quasi-locality: when should renormalization work?

Necessary condition: divergent subgraphs must be quasi-local, i.e. look like
(connected) tensor invariants.

Example: when internal scales j � external scales i

This property is not generic in TGFTs ! ”traciality” criterion:

flatness condition: the parallel transports must peak around 1l (up to gauge);

combinatorial condition: connected boundary graph.

Models studied so far dominated by melonic graphs ! always tracial.

Sylvain Carrozza (CPT) GFT and the Renormalization Group QGP 2015 20 / 32

GFT Renormalization: combinatorics of FDs

1 13 3

1 1

13

2

Figure 4: Feynman graph with 4 external legs and 4 vertices.

2.2 Canonical dimensions

Another important quantity for our purpose is the canonical dimension. The reader interested in more
detail may consult [52, 66], we only focus on the key arguments here. As proven in [51], the divergence
degree !(G) of a leading order graph G is given by

!(G) = 3� N(G)
2

� 2n2(G)� n4(G) , (13)

where nk(G) is the number of bubble vertices of valency k in G. For N = 4, ! is bounded by 1, and
melonic graphs containing only order-6 interactions have ! = 1. This indicates that, perturbatively,
�4(⇤) naturally scales as ⇤ in the ultraviolet. We therefore attribute it a canonical dimension [�4] = 1.
More generally, a bubble interaction b of order Nb is associated to a coupling constant �b of dimension:

[�b] := 3� Nb

2
, (14)

in such a way that renormalizable interactions are characterized by [�b] � 0. Including the mass term
in this definition, we have:

[m2] = 2 , [�4] = 1 , [�6,1] = [�6,2] = 0 . (15)

Hence, the dimensionless coupling constants u2, u4, u6,1 and u6,2 are defined as:

u2(⇤) :=
m

2(⇤)

⇤2
, u4(⇤) :=

�4(⇤)

⇤
, u6,1(⇤) := �6,1(⇤) , u6,2(⇤) := �6,2(⇤) . (16)

We will use this dimensionless parametrization from section 3 onwards, in order to obtain well-defined
autonomous systems of renormalization group equations.

3 Functional renormalization group: order 6 truncation

In this section, we introduce the effective average action associated to the field theory defined by (1).
It satisfies a Functional Renormalization Group (FRG) or Wetterich–Morris equation [54, 55], which
can be viewed as a particular realization of Wilson’s renormalization group. After recalling the general
construction of the FRG in the context of tensorial field theories [65, 66, 67, 68, 49]7, we will use a �

6

truncation of the Wetterich–Morris equation to extract approximate renormalization group equations.
For general reviews ans applications of the FRG, we refer the reader to [56, 57, 58, 59, 60, 61, 62].

7
See also [76, 77, 78] for a FRG based on the Polchinski equation [79].

6

example of Feynman diagram in 4d 
(interaction process of tetrahedra ~ 
4d simplicial complex)

contraction of (divergent) subgraphs 
+ absorption in effective vertices is 
coarse-graining of simplicial lattices

(perturbative) GFT renormalization = 
renormalization of lattice gravity path integral

spin foam amplitude consistency under coarse graining 
= RG consistency of GFT Feynman amplitudes see Bianca’s talk



FRG analysis of GFT models

boundary conditions:

Functional Renormalization Group...

In the FRG approach we construct an e↵ective theory for the subset of modes which is
most relevant at a certain scale by introducing an IR cut-o↵ k, a UV cut-o↵ ⇤ and a
regulator mass-like kernel Rk which decouples slow modes from the e↵ective theory
[Wilson, 1971].

We rephrase the renormalization problem in terms of a di↵erential equation (Wetterich
equation) for the e↵ective average action �k , parametrized by the parameter k [Wetterich,

1993].

The boundary conditions for the flow are:

�k=0[','] = �[','] , �k=⇤[','] = S [','] , (8)

where ' = h�i.

Riccardo Martini (UNIBO) FRG for TGFT March 14, 2016 13 / 32
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Wetterich equation:

...for Tensorial Group Field Theories.

In a work from Benedetti et al. (2014) the formalism of Functional Renormalization
Group was generalized to the framework of TGFTs and applied to a rank 3, �4 model
over G = U(1).

The Wetterich equation for Tensorial Group Field Theories reads [Benedetti et al, 2014]

@t�k = Tr[@tRk · (�(2)

k + Rk)
�1] (9)

where t = log k.
Equation (9) is a one-loop exact equation, but in order to deal with it and to perform

real computations we will need to introduce a truncation scheme.

A standard choice for the kernel of the regulator mass-like term is of the Litim form:

Rk(p, p
0) = ✓(k2 � ⌃sp

2

s )Zk(k
2 � ⌃sp

2

s )�(p� p
0) (10)
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D. Benedetti, J. Ben Geloun, DO, ‘14

regularised path integral:

5

(a) (b) (c)

FIG. 1. Three examples of Feynman graphs for a rank 3 TGFT’s. The trace invariants used to build the interactions are:
figure (a) Tr(��), figure (b) an example of Tr(����), figure (c) an example of Tr(������).

B. FRG formulation for TGFTs

The generalisation of the FRG formalism [50–54] to TGFTs is straightforward and was first provided in [34]. Given
a partition function of the type (6), we choose a UV cut-o↵ M and a IR cut-o↵ N1. Adding to the action a regulator
term of the form:

�SN [�,�] = Tr(� ·RN · �) =
X

P,P0

�P RN (P;P0)�P0 , (7)

we can perform the usual splitting in high and low modes. In particular, given an action with a generic kernel
depending on the derivative of the fields K(r�) and a generalised Fourier transform F , if we choose RN to be of the
specific form

RN (P;P0) = N�P,P0R

✓
F(KP)

N

◆
, (8)

we need to impose on the profile function R(z) the following conditions:
- positivity R(z) � 0, to indeed suppress and not enhance modes outside of the domain of the regulator function;
- monotonicity d

dzR(z)  0, so that high modes will not be suppressed more that low modes;
- R(0) > 0 and limz!+1 R(z) = 0 to exclude functions with constant profile.
The last requirement, together with the form (8), guarantees that the regulator is removed for Z ! 0. In accordance

with the usual FRG procedure, we define the scale dependent partition function as:

ZN [J, J ] = eWN [J,J] =

Z
d�d� e�S[�,�]��SN [�,�]+Tr(J·�)+Tr(J·�) (9)

and the generating functional of 1PI correlation functions after Legendre transform are given in terms of the average
field ' = h�i as

�N [','] = sup
J,J

⇢
Tr(J · ') + Tr(J · ')�WN [J, J ]��SN [',']

�
. (10)

Given the above definitions, the Wetterich equation takes the form:

@t�N [','] = Tr
⇣
@tRN · [�(2)

N +RN ]�1
⌘
, (11)

where t = logN , so that @t = N@N , and the “super”-trace symbol Tr means that we are summing over all mode
labels. More explicitly, the functional trace reads:

X

P,P0

@tRN (P;P0)[�(2)
N +RN ]�1(P0;P) . (12)

The presence of the @tRN in the Wetterich equation for TGFT’s, enforces the trace to be UV-finite if the profile
function and its derivative go fast enough to 0, as z ! +1. In this way, we can basically forget about the UV cut-o↵
M . In any case, as in any resolution of di↵erential equation, we need an initial condition of the type

�N=M [','] = S[','] , (13)

1 We adopt a standard QFT terminology for field modes, even if no spacetime interpretation should be attached to them, at this stage.

k k k

regulator cutting off IR modes (UV well-defined with appropriate choice of IR regulator)
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function and its derivative go fast enough to 0, as z ! +1. In this way, we can basically forget about the UV cut-o↵
M . In any case, as in any resolution of di↵erential equation, we need an initial condition of the type

�N=M [','] = S[','] , (13)

1 We adopt a standard QFT terminology for field modes, even if no spacetime interpretation should be attached to them, at this stage.
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FIG. 1. Three examples of Feynman graphs for a rank 3 TGFT’s. The trace invariants used to build the interactions are:
figure (a) Tr(��), figure (b) an example of Tr(����), figure (c) an example of Tr(������).

B. FRG formulation for TGFTs
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The presence of the @tRN in the Wetterich equation for TGFT’s, enforces the trace to be UV-finite if the profile
function and its derivative go fast enough to 0, as z ! +1. In this way, we can basically forget about the UV cut-o↵
M . In any case, as in any resolution of di↵erential equation, we need an initial condition of the type
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1 We adopt a standard QFT terminology for field modes, even if no spacetime interpretation should be attached to them, at this stage.

effective action: k k k

computing the effective action solving the Wetterich equation amounts to solving the GFT path integral
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PERTURBATIVE GFT RENORMALIZATION

radiative corrections to the GFT 2-point function of the BF GFT models

Ben Geloun, Bonzom, arXiv:1101.4294 [hep-th]

g1

g2
g3

g′1
g′2
g′3

h1

h2

h3

two leading divergences:
a mass renormalization

a divergence proportional to the second derivatives of the propagator

this needs to be balanced by a new counter-term in the GFT Boulatov action:

m2
Z

[dg]φ(g1, g2, g3) →

Z
[dg]φ(g1, g2, g3)

"
3X

i=1

∆i + m2

#

φ(g1, g2, g3)

similar (and higher) derivative divergences in higher dimensions
BF GFT model could be fixed point of more general GFT dynamics - attractive or
repulsive? role of symmetries? - see Bianca’s talk

analogous calculations for EPRL model (Perini, Roveli, Speziale, arXiv:0810.1714 [gr-qc])

need to tackle intensively all 4d gravity models!!!

perturbative GFT renormalization vs renormalization of discrete gravity?

what is the relevant notion of locality, if any? (Rivasseau, arXiv:1103.1900 [gr-qc])
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• radiative corrections generate non-trivial kinetic term
Ben Geloun, Bonzom, ’11; Ben Geloun, ‘13

kinetic term = e.g. Laplacian on SU(2)

A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Gaussian measure

We would like to have a TGFT with:

a built-in notion of scale ⇥ a non-trivial propagator spectrum;
a notion of discrete connection at the level of the amplitudes.

Particular realization that we consider:

Dynamics encoded in a non-trivial propagator: (justified by studies of
radiative corrections [Ben Geloun, Bonzom ’11] and analogies with AFT
[Rivasseau]) �

m2 �
d⇤

⇥=1

�⇥

⇥�1

Boulatov-like restriction of d.o.f:

⌅h ⇤ G , ⇤(hg1, . . . , hgd) = ⇤(g1, . . . gd) .

Implemented by a group averaging.

This defines our measure dµC :
⇧

dµC (⇤,⇤)⇤(g⇥)⇤(g
⇥
⇥) = C(g⇥; g

⇥
⇥) =

⇧ +⇤

0

d� e��m2
⇧

dh
d⌅

⇥=1

K�(g⇥hg
⇥�1
⇥ ) ,

where K� is the heat kernel on G at time �.
Sylvain Carrozza Renormalization of Tensorial Group Field Theories: U(1) Models in Four Dimensions
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Figure 1: Bipartite 3-colored graph associated to the interaction kernel W(`).

implements the closure constraint (see e.g. [3]) and is responsible for the SU(2) lattice gauge theory
form of the Feynman amplitudes. Finally, the classical (interaction part of the) action S⇤ is given by:

S⇤[ , ] =
�4(⇤)

2

3X

`=1

Z
[

4Y

j=1

dgj ]W(`)(g1,g2,g3,g4) (g1) ̄(g2) (g3) ̄(g4) (4)

+
�6,1(⇤)

3

3X

`=1

Z
[

6Y

j=1

dgj ]X (`)(g1,g2,g3,g4,g5,g6) (g1) ̄(g2) (g3) ̄(g4) (g5) ̄(g6)

+ �6,2(⇤)
3X

`=1

Z
[

6Y

j=1

dgj ]Y(`)(g1,g2,g3,g4,g5,g6) (g1) ̄(g2) (g3) ̄(g4) (g5) ̄(g6)

where the symbols W(`), X (`) and Y(`) are products of delta functions associated to tensor invariant
interactions, and �b(⇤) (b 2 {4, (6, 1), (6, 2)}) are running coupling constants. For instance:

W(`)(g1,g2,g3,g4) = �(g1`g
�1
4` )�(g2`g

�1
3` )

Y

j 6=`

�(g1jg
�1
2j )�(g3jg

�1
4j ) . (5)

Each term in the action S⇤ is conveniently indexed by a so-called bubble, which is a bipartite 3-colored
graph (see [75] and references therein for more on colored graphs). For instance, the kernel W(`) is
associated to the graph shown in Figure 1. Black and white vertices respectively represent fields  
and  ̄, while a line with color index ` 2 {1, 2, 3} pictures the convolution of two fields with respect to
the `th SU(2) copy of the base space. More generally, the interactions involved in the action S⇤ are
associated to the following bubbles4:

` `  !
Z
[

4Y

j=1

dgj ]W(`)(g1,g2,g3,g4) (g1) ̄(g2) (g3) ̄(g4) (6)

`

``

 !
Z
[

6Y

j=1

dgj ]X (`)(g1,g2,g3,g4,g5,g6) (g1) ̄(g2) (g3) ̄(g4) (g5) ̄(g6) (7)

`  !
Z
[

6Y

j=1

dgj ]Y(`)(g1,g2,g3,g4,g5,g6) (g1) ̄(g2) (g3) ̄(g4) (g5) ̄(g6) (8)

where the index ` runs from 1 to 3 and characterizes each bubble (up to automorphisms). Note that
the action (4) is invariant under color permutations, and that the coupling constants �4, �6,1 and �6,2
have been normalized by the number of automorphisms of the bubble they parametrize5.

These three types of interactions are examples of melonic bubbles [22, 9, 15], which form a recur-
sively generated subclass of colored graphs. They play a central role in tensorial theories in that they
generically dominate their large ⇤ regime. In d = 3, the smallest melonic bubble (with two vertices)
is pictured in Figure 2; it represents a mass term. All higher order melonic bubbles can be obtained

4
In the rest of the paper we will freely substitute bubble drawings for the interactions they represent.

5
As usual, this facilitates the computation of combinatorial factors in the Feynman expansion. See [52] for details

about the definition of colored graph automorphism we are using.

4

• interactions generate effective terms associated to “bubbles”

A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Locality as tensor invariance

Assume S is a tensor invariant, because:
combinatorial control over topologies
analytical tool: 1/N expansion
universal properties

More precisely, assume S to be a finite sum of connected tensor
invariants, indexed by d-colored graphs (d-bubble):

S(�,�) =
�

b�B

tbIb(�,�) .

d-colored graphs are regular (valency d), bipartite,
edge-colored graphs.
Correspondence with tensor invariants:

white (resp. black) dot � field (resp. complex
conjugate field);
edge of color ⌅ � convolution of ⌅-th indices of �
and �.

�
[dgi ]

12�(g1, g2, g3, g4)�(g1, g2, g3, g5)�(g8, g7, g6, g5)

�(g8, g9, g10, g11)�(g12, g9, g10, g11)�(g12, g7, g6, g4)

Sylvain Carrozza Renormalization of Tensorial Group Field Theories: U(1) Models in Four Dimensions

indexed by bipartite 3-colored graphs (“bubbles”) ~ 
dual to 3-cells with triangulated boundary

“tensor invariants”

large “tensorial” theory space



Renormalization flow of GFT models - 3d example
this suggests to consider general models of “tensorial” type - example: d=3, G=SU(2)

field theory [69].
Our purpose is to undertake the FRG analysis of the three-dimensional SU(2) GFT first introduced

in [51]. As far as quantum gravity is concerned, it is arguably the most interesting renormalizable
GFT on the market; indeed, it lives in the theory space of 3d Euclidean quantum gravity (see [31]
and references therein). With this example, we demonstrate that models based on non-Abelian groups
like SU(2) are amenable to the FRG, which is a necessary step towards the application of comparable
techniques in a four-dimensional context [70, 71, 72, 73, 74]. Another motivation for looking at this
particular model is that its renormalization group is already well understood in the perturbative regime.
In particular, it was shown in [52] that generic renormalization group trajectories are repelled from
the Gaussian fixed point in the ultraviolet, and are therefore not asymptotically free; this failure
of perturbative ultraviolet completeness naturally raised the question of the existence of a non-trivial
ultraviolet fixed point. The "-expansion of [53] provided first hints that such a fixed point may actually
be realized, and the FRG will allow us to investigate this question in greater detail.

The paper is organized as follows. After recalling the definition of the SU(2) GFT of [51] in Section
2, we will set-up the FRG framework and study its �6 truncation in Section 3. This crude approximation
only includes perturbatively renormalizable interactions, but it will already suggest interesting features,
such as a candidate ultraviolet fixed point. In Section 4, we will refine the analysis through the inclusion
of order 8 perturbatively irrelevant interactions in the renormalization group ansatz, which will result
in a nine-dimensional truncated theory space. We will again find an ultraviolet fixed point, and hence
provide more evidence in favor of an asymptotic safety scenario. Finally, we will remark in Section
5 that this fixed point lives in a restricted sector of the theory space, generated by a small subset
of all possible tensorial interactions. This will allow to push the analysis to even higher orders, and
confirm the qualitative features of the ultraviolet fixed point in truncations capturing the effect of up
to �12 interactions. Finally, we will comment on the relevance and interpretation of our results in the
conclusion, with an emphasis on possible relations to GFT condensates.

2 Three-dimensional tensorial GFT on SU(2)

2.1 Perturbative definition and ultraviolet regularization

In the present article, we are interested in the non-perturbative ultraviolet properties of the TGFT
originally introduced in [51, 52, 53], whose construction we briefly recall. This three-dimensional model,
based on the group manifold SU(2), is defined by a partition function of the form

Z⇤ :=

Z
dµC⇤ [ , ] e

�S⇤[ ̄, ] , (1)

where  (resp.  ̄) are complex fields over three copies of SU(2)3:

 : SU(2)3 ! C (2)
g ⌘ (g1, g2, g3) 7!  (g1, g2, g3)

The UV regularized Gaussian measure dµC⇤ , which encodes the kinetic part of the classical action, is
characterized by the covariance C⇤:

Z
dµC⇤( ,  ̄) (g) ̄(g

0) =

Z

SU(2)
dh

Z 1

1/⇤2
d↵ e

�↵m2(⇤)
3Y

`=1

K↵(g`hg
0�1
` ), (3)

where K↵ is the heat kernel on SU(2) at time ↵, and ⇤ > 0 is an ultraviolet regulator (imposing
a smooth cut-off on large spin labels in the harmonic expansion of  and  ). The integral on h

3
We will use the vector notation g = (g1, g2, g3) throughout the paper. Similarly, dg will be short-hand for the

product of Haar measures dg1dg2dg3.

3
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implements the closure constraint (see e.g. [3]) and is responsible for the SU(2) lattice gauge theory
form of the Feynman amplitudes. Finally, the classical (interaction part of the) action S⇤ is given by:
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where the symbols W(`), X (`) and Y(`) are products of delta functions associated to tensor invariant
interactions, and �b(⇤) (b 2 {4, (6, 1), (6, 2)}) are running coupling constants. For instance:
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Each term in the action S⇤ is conveniently indexed by a so-called bubble, which is a bipartite 3-colored
graph (see [75] and references therein for more on colored graphs). For instance, the kernel W(`) is
associated to the graph shown in Figure 1. Black and white vertices respectively represent fields  
and  ̄, while a line with color index ` 2 {1, 2, 3} pictures the convolution of two fields with respect to
the `th SU(2) copy of the base space. More generally, the interactions involved in the action S⇤ are
associated to the following bubbles4:
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where the index ` runs from 1 to 3 and characterizes each bubble (up to automorphisms). Note that
the action (4) is invariant under color permutations, and that the coupling constants �4, �6,1 and �6,2
have been normalized by the number of automorphisms of the bubble they parametrize5.

These three types of interactions are examples of melonic bubbles [22, 9, 15], which form a recur-
sively generated subclass of colored graphs. They play a central role in tensorial theories in that they
generically dominate their large ⇤ regime. In d = 3, the smallest melonic bubble (with two vertices)
is pictured in Figure 2; it represents a mass term. All higher order melonic bubbles can be obtained
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In the rest of the paper we will freely substitute bubble drawings for the interactions they represent.
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As usual, this facilitates the computation of combinatorial factors in the Feynman expansion. See [52] for details

about the definition of colored graph automorphism we are using.
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Renormalization flow of GFT models - 3d example
this suggests to consider general models of “tensorial” type - example: d=3, G=SU(2)

field theory [69].
Our purpose is to undertake the FRG analysis of the three-dimensional SU(2) GFT first introduced

in [51]. As far as quantum gravity is concerned, it is arguably the most interesting renormalizable
GFT on the market; indeed, it lives in the theory space of 3d Euclidean quantum gravity (see [31]
and references therein). With this example, we demonstrate that models based on non-Abelian groups
like SU(2) are amenable to the FRG, which is a necessary step towards the application of comparable
techniques in a four-dimensional context [70, 71, 72, 73, 74]. Another motivation for looking at this
particular model is that its renormalization group is already well understood in the perturbative regime.
In particular, it was shown in [52] that generic renormalization group trajectories are repelled from
the Gaussian fixed point in the ultraviolet, and are therefore not asymptotically free; this failure
of perturbative ultraviolet completeness naturally raised the question of the existence of a non-trivial
ultraviolet fixed point. The "-expansion of [53] provided first hints that such a fixed point may actually
be realized, and the FRG will allow us to investigate this question in greater detail.

The paper is organized as follows. After recalling the definition of the SU(2) GFT of [51] in Section
2, we will set-up the FRG framework and study its �6 truncation in Section 3. This crude approximation
only includes perturbatively renormalizable interactions, but it will already suggest interesting features,
such as a candidate ultraviolet fixed point. In Section 4, we will refine the analysis through the inclusion
of order 8 perturbatively irrelevant interactions in the renormalization group ansatz, which will result
in a nine-dimensional truncated theory space. We will again find an ultraviolet fixed point, and hence
provide more evidence in favor of an asymptotic safety scenario. Finally, we will remark in Section
5 that this fixed point lives in a restricted sector of the theory space, generated by a small subset
of all possible tensorial interactions. This will allow to push the analysis to even higher orders, and
confirm the qualitative features of the ultraviolet fixed point in truncations capturing the effect of up
to �12 interactions. Finally, we will comment on the relevance and interpretation of our results in the
conclusion, with an emphasis on possible relations to GFT condensates.

2 Three-dimensional tensorial GFT on SU(2)

2.1 Perturbative definition and ultraviolet regularization

In the present article, we are interested in the non-perturbative ultraviolet properties of the TGFT
originally introduced in [51, 52, 53], whose construction we briefly recall. This three-dimensional model,
based on the group manifold SU(2), is defined by a partition function of the form

Z⇤ :=

Z
dµC⇤ [ , ] e

�S⇤[ ̄, ] , (1)

where  (resp.  ̄) are complex fields over three copies of SU(2)3:

 : SU(2)3 ! C (2)
g ⌘ (g1, g2, g3) 7!  (g1, g2, g3)

The UV regularized Gaussian measure dµC⇤ , which encodes the kinetic part of the classical action, is
characterized by the covariance C⇤:

Z
dµC⇤( ,  ̄) (g) ̄(g
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1/⇤2
d↵ e

�↵m2(⇤)
3Y

`=1

K↵(g`hg
0�1
` ), (3)

where K↵ is the heat kernel on SU(2) at time ↵, and ⇤ > 0 is an ultraviolet regulator (imposing
a smooth cut-off on large spin labels in the harmonic expansion of  and  ). The integral on h

3
We will use the vector notation g = (g1, g2, g3) throughout the paper. Similarly, dg will be short-hand for the

product of Haar measures dg1dg2dg3.
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Figure 1: Bipartite 3-colored graph associated to the interaction kernel W(`).

implements the closure constraint (see e.g. [3]) and is responsible for the SU(2) lattice gauge theory
form of the Feynman amplitudes. Finally, the classical (interaction part of the) action S⇤ is given by:

S⇤[ , ] =
�4(⇤)

2

3X

`=1

Z
[
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dgj ]Y(`)(g1,g2,g3,g4,g5,g6) (g1) ̄(g2) (g3) ̄(g4) (g5) ̄(g6)

where the symbols W(`), X (`) and Y(`) are products of delta functions associated to tensor invariant
interactions, and �b(⇤) (b 2 {4, (6, 1), (6, 2)}) are running coupling constants. For instance:

W(`)(g1,g2,g3,g4) = �(g1`g
�1
4` )�(g2`g

�1
3` )

Y

j 6=`

�(g1jg
�1
2j )�(g3jg

�1
4j ) . (5)

Each term in the action S⇤ is conveniently indexed by a so-called bubble, which is a bipartite 3-colored
graph (see [75] and references therein for more on colored graphs). For instance, the kernel W(`) is
associated to the graph shown in Figure 1. Black and white vertices respectively represent fields  
and  ̄, while a line with color index ` 2 {1, 2, 3} pictures the convolution of two fields with respect to
the `th SU(2) copy of the base space. More generally, the interactions involved in the action S⇤ are
associated to the following bubbles4:

` `  !
Z
[

4Y
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dgj ]W(`)(g1,g2,g3,g4) (g1) ̄(g2) (g3) ̄(g4) (6)
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where the index ` runs from 1 to 3 and characterizes each bubble (up to automorphisms). Note that
the action (4) is invariant under color permutations, and that the coupling constants �4, �6,1 and �6,2
have been normalized by the number of automorphisms of the bubble they parametrize5.

These three types of interactions are examples of melonic bubbles [22, 9, 15], which form a recur-
sively generated subclass of colored graphs. They play a central role in tensorial theories in that they
generically dominate their large ⇤ regime. In d = 3, the smallest melonic bubble (with two vertices)
is pictured in Figure 2; it represents a mass term. All higher order melonic bubbles can be obtained

4
In the rest of the paper we will freely substitute bubble drawings for the interactions they represent.

5
As usual, this facilitates the computation of combinatorial factors in the Feynman expansion. See [52] for details

about the definition of colored graph automorphism we are using.
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associated to the graph shown in Figure 1. Black and white vertices respectively represent fields  
and  ̄, while a line with color index ` 2 {1, 2, 3} pictures the convolution of two fields with respect to
the `th SU(2) copy of the base space. More generally, the interactions involved in the action S⇤ are
associated to the following bubbles4:
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where the index ` runs from 1 to 3 and characterizes each bubble (up to automorphisms). Note that
the action (4) is invariant under color permutations, and that the coupling constants �4, �6,1 and �6,2
have been normalized by the number of automorphisms of the bubble they parametrize5.

These three types of interactions are examples of melonic bubbles [22, 9, 15], which form a recur-
sively generated subclass of colored graphs. They play a central role in tensorial theories in that they
generically dominate their large ⇤ regime. In d = 3, the smallest melonic bubble (with two vertices)
is pictured in Figure 2; it represents a mass term. All higher order melonic bubbles can be obtained
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Figure 4: Feynman graph with 4 external legs and 4 vertices.

2.2 Canonical dimensions

Another important quantity for our purpose is the canonical dimension. The reader interested in more
detail may consult [52, 66], we only focus on the key arguments here. As proven in [51], the divergence
degree !(G) of a leading order graph G is given by

!(G) = 3� N(G)
2

� 2n2(G)� n4(G) , (13)

where nk(G) is the number of bubble vertices of valency k in G. For N = 4, ! is bounded by 1, and
melonic graphs containing only order-6 interactions have ! = 1. This indicates that, perturbatively,
�4(⇤) naturally scales as ⇤ in the ultraviolet. We therefore attribute it a canonical dimension [�4] = 1.
More generally, a bubble interaction b of order Nb is associated to a coupling constant �b of dimension:

[�b] := 3� Nb

2
, (14)

in such a way that renormalizable interactions are characterized by [�b] � 0. Including the mass term
in this definition, we have:

[m2] = 2 , [�4] = 1 , [�6,1] = [�6,2] = 0 . (15)

Hence, the dimensionless coupling constants u2, u4, u6,1 and u6,2 are defined as:

u2(⇤) :=
m

2(⇤)

⇤2
, u4(⇤) :=

�4(⇤)

⇤
, u6,1(⇤) := �6,1(⇤) , u6,2(⇤) := �6,2(⇤) . (16)

We will use this dimensionless parametrization from section 3 onwards, in order to obtain well-defined
autonomous systems of renormalization group equations.

3 Functional renormalization group: order 6 truncation

In this section, we introduce the effective average action associated to the field theory defined by (1).
It satisfies a Functional Renormalization Group (FRG) or Wetterich–Morris equation [54, 55], which
can be viewed as a particular realization of Wilson’s renormalization group. After recalling the general
construction of the FRG in the context of tensorial field theories [65, 66, 67, 68, 49]7, we will use a �

6

truncation of the Wetterich–Morris equation to extract approximate renormalization group equations.
For general reviews ans applications of the FRG, we refer the reader to [56, 57, 58, 59, 60, 61, 62].

7
See also [76, 77, 78] for a FRG based on the Polchinski equation [79].
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field theory [69].
Our purpose is to undertake the FRG analysis of the three-dimensional SU(2) GFT first introduced

in [51]. As far as quantum gravity is concerned, it is arguably the most interesting renormalizable
GFT on the market; indeed, it lives in the theory space of 3d Euclidean quantum gravity (see [31]
and references therein). With this example, we demonstrate that models based on non-Abelian groups
like SU(2) are amenable to the FRG, which is a necessary step towards the application of comparable
techniques in a four-dimensional context [70, 71, 72, 73, 74]. Another motivation for looking at this
particular model is that its renormalization group is already well understood in the perturbative regime.
In particular, it was shown in [52] that generic renormalization group trajectories are repelled from
the Gaussian fixed point in the ultraviolet, and are therefore not asymptotically free; this failure
of perturbative ultraviolet completeness naturally raised the question of the existence of a non-trivial
ultraviolet fixed point. The "-expansion of [53] provided first hints that such a fixed point may actually
be realized, and the FRG will allow us to investigate this question in greater detail.

The paper is organized as follows. After recalling the definition of the SU(2) GFT of [51] in Section
2, we will set-up the FRG framework and study its �6 truncation in Section 3. This crude approximation
only includes perturbatively renormalizable interactions, but it will already suggest interesting features,
such as a candidate ultraviolet fixed point. In Section 4, we will refine the analysis through the inclusion
of order 8 perturbatively irrelevant interactions in the renormalization group ansatz, which will result
in a nine-dimensional truncated theory space. We will again find an ultraviolet fixed point, and hence
provide more evidence in favor of an asymptotic safety scenario. Finally, we will remark in Section
5 that this fixed point lives in a restricted sector of the theory space, generated by a small subset
of all possible tensorial interactions. This will allow to push the analysis to even higher orders, and
confirm the qualitative features of the ultraviolet fixed point in truncations capturing the effect of up
to �12 interactions. Finally, we will comment on the relevance and interpretation of our results in the
conclusion, with an emphasis on possible relations to GFT condensates.

2 Three-dimensional tensorial GFT on SU(2)

2.1 Perturbative definition and ultraviolet regularization

In the present article, we are interested in the non-perturbative ultraviolet properties of the TGFT
originally introduced in [51, 52, 53], whose construction we briefly recall. This three-dimensional model,
based on the group manifold SU(2), is defined by a partition function of the form

Z⇤ :=

Z
dµC⇤ [ , ] e

�S⇤[ ̄, ] , (1)

where  (resp.  ̄) are complex fields over three copies of SU(2)3:

 : SU(2)3 ! C (2)
g ⌘ (g1, g2, g3) 7!  (g1, g2, g3)

The UV regularized Gaussian measure dµC⇤ , which encodes the kinetic part of the classical action, is
characterized by the covariance C⇤:
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where K↵ is the heat kernel on SU(2) at time ↵, and ⇤ > 0 is an ultraviolet regulator (imposing
a smooth cut-off on large spin labels in the harmonic expansion of  and  ). The integral on h

3
We will use the vector notation g = (g1, g2, g3) throughout the paper. Similarly, dg will be short-hand for the

product of Haar measures dg1dg2dg3.

3

` `

Figure 1: Bipartite 3-colored graph associated to the interaction kernel W(`).

implements the closure constraint (see e.g. [3]) and is responsible for the SU(2) lattice gauge theory
form of the Feynman amplitudes. Finally, the classical (interaction part of the) action S⇤ is given by:

S⇤[ , ] =
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where the symbols W(`), X (`) and Y(`) are products of delta functions associated to tensor invariant
interactions, and �b(⇤) (b 2 {4, (6, 1), (6, 2)}) are running coupling constants. For instance:

W(`)(g1,g2,g3,g4) = �(g1`g
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4` )�(g2`g
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j 6=`
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Each term in the action S⇤ is conveniently indexed by a so-called bubble, which is a bipartite 3-colored
graph (see [75] and references therein for more on colored graphs). For instance, the kernel W(`) is
associated to the graph shown in Figure 1. Black and white vertices respectively represent fields  
and  ̄, while a line with color index ` 2 {1, 2, 3} pictures the convolution of two fields with respect to
the `th SU(2) copy of the base space. More generally, the interactions involved in the action S⇤ are
associated to the following bubbles4:
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where the index ` runs from 1 to 3 and characterizes each bubble (up to automorphisms). Note that
the action (4) is invariant under color permutations, and that the coupling constants �4, �6,1 and �6,2
have been normalized by the number of automorphisms of the bubble they parametrize5.

These three types of interactions are examples of melonic bubbles [22, 9, 15], which form a recur-
sively generated subclass of colored graphs. They play a central role in tensorial theories in that they
generically dominate their large ⇤ regime. In d = 3, the smallest melonic bubble (with two vertices)
is pictured in Figure 2; it represents a mass term. All higher order melonic bubbles can be obtained
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As usual, this facilitates the computation of combinatorial factors in the Feynman expansion. See [52] for details

about the definition of colored graph automorphism we are using.
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where the index ` runs from 1 to 3 and characterizes each bubble (up to automorphisms). Note that
the action (4) is invariant under color permutations, and that the coupling constants �4, �6,1 and �6,2
have been normalized by the number of automorphisms of the bubble they parametrize5.

These three types of interactions are examples of melonic bubbles [22, 9, 15], which form a recur-
sively generated subclass of colored graphs. They play a central role in tensorial theories in that they
generically dominate their large ⇤ regime. In d = 3, the smallest melonic bubble (with two vertices)
is pictured in Figure 2; it represents a mass term. All higher order melonic bubbles can be obtained
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2.2 Canonical dimensions

Another important quantity for our purpose is the canonical dimension. The reader interested in more
detail may consult [52, 66], we only focus on the key arguments here. As proven in [51], the divergence
degree !(G) of a leading order graph G is given by

!(G) = 3� N(G)
2

� 2n2(G)� n4(G) , (13)

where nk(G) is the number of bubble vertices of valency k in G. For N = 4, ! is bounded by 1, and
melonic graphs containing only order-6 interactions have ! = 1. This indicates that, perturbatively,
�4(⇤) naturally scales as ⇤ in the ultraviolet. We therefore attribute it a canonical dimension [�4] = 1.
More generally, a bubble interaction b of order Nb is associated to a coupling constant �b of dimension:

[�b] := 3� Nb

2
, (14)

in such a way that renormalizable interactions are characterized by [�b] � 0. Including the mass term
in this definition, we have:

[m2] = 2 , [�4] = 1 , [�6,1] = [�6,2] = 0 . (15)

Hence, the dimensionless coupling constants u2, u4, u6,1 and u6,2 are defined as:

u2(⇤) :=
m

2(⇤)

⇤2
, u4(⇤) :=

�4(⇤)

⇤
, u6,1(⇤) := �6,1(⇤) , u6,2(⇤) := �6,2(⇤) . (16)

We will use this dimensionless parametrization from section 3 onwards, in order to obtain well-defined
autonomous systems of renormalization group equations.

3 Functional renormalization group: order 6 truncation

In this section, we introduce the effective average action associated to the field theory defined by (1).
It satisfies a Functional Renormalization Group (FRG) or Wetterich–Morris equation [54, 55], which
can be viewed as a particular realization of Wilson’s renormalization group. After recalling the general
construction of the FRG in the context of tensorial field theories [65, 66, 67, 68, 49]7, we will use a �

6

truncation of the Wetterich–Morris equation to extract approximate renormalization group equations.
For general reviews ans applications of the FRG, we refer the reader to [56, 57, 58, 59, 60, 61, 62].

7
See also [76, 77, 78] for a FRG based on the Polchinski equation [79].
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this suggests to consider general models of “tensorial” type - example: d=3, G=SU(2)

field theory [69].
Our purpose is to undertake the FRG analysis of the three-dimensional SU(2) GFT first introduced

in [51]. As far as quantum gravity is concerned, it is arguably the most interesting renormalizable
GFT on the market; indeed, it lives in the theory space of 3d Euclidean quantum gravity (see [31]
and references therein). With this example, we demonstrate that models based on non-Abelian groups
like SU(2) are amenable to the FRG, which is a necessary step towards the application of comparable
techniques in a four-dimensional context [70, 71, 72, 73, 74]. Another motivation for looking at this
particular model is that its renormalization group is already well understood in the perturbative regime.
In particular, it was shown in [52] that generic renormalization group trajectories are repelled from
the Gaussian fixed point in the ultraviolet, and are therefore not asymptotically free; this failure
of perturbative ultraviolet completeness naturally raised the question of the existence of a non-trivial
ultraviolet fixed point. The "-expansion of [53] provided first hints that such a fixed point may actually
be realized, and the FRG will allow us to investigate this question in greater detail.

The paper is organized as follows. After recalling the definition of the SU(2) GFT of [51] in Section
2, we will set-up the FRG framework and study its �6 truncation in Section 3. This crude approximation
only includes perturbatively renormalizable interactions, but it will already suggest interesting features,
such as a candidate ultraviolet fixed point. In Section 4, we will refine the analysis through the inclusion
of order 8 perturbatively irrelevant interactions in the renormalization group ansatz, which will result
in a nine-dimensional truncated theory space. We will again find an ultraviolet fixed point, and hence
provide more evidence in favor of an asymptotic safety scenario. Finally, we will remark in Section
5 that this fixed point lives in a restricted sector of the theory space, generated by a small subset
of all possible tensorial interactions. This will allow to push the analysis to even higher orders, and
confirm the qualitative features of the ultraviolet fixed point in truncations capturing the effect of up
to �12 interactions. Finally, we will comment on the relevance and interpretation of our results in the
conclusion, with an emphasis on possible relations to GFT condensates.

2 Three-dimensional tensorial GFT on SU(2)

2.1 Perturbative definition and ultraviolet regularization

In the present article, we are interested in the non-perturbative ultraviolet properties of the TGFT
originally introduced in [51, 52, 53], whose construction we briefly recall. This three-dimensional model,
based on the group manifold SU(2), is defined by a partition function of the form

Z⇤ :=

Z
dµC⇤ [ , ] e

�S⇤[ ̄, ] , (1)

where  (resp.  ̄) are complex fields over three copies of SU(2)3:

 : SU(2)3 ! C (2)
g ⌘ (g1, g2, g3) 7!  (g1, g2, g3)

The UV regularized Gaussian measure dµC⇤ , which encodes the kinetic part of the classical action, is
characterized by the covariance C⇤:

Z
dµC⇤( ,  ̄) (g) ̄(g

0) =

Z

SU(2)
dh

Z 1

1/⇤2
d↵ e

�↵m2(⇤)
3Y

`=1

K↵(g`hg
0�1
` ), (3)

where K↵ is the heat kernel on SU(2) at time ↵, and ⇤ > 0 is an ultraviolet regulator (imposing
a smooth cut-off on large spin labels in the harmonic expansion of  and  ). The integral on h

3
We will use the vector notation g = (g1, g2, g3) throughout the paper. Similarly, dg will be short-hand for the

product of Haar measures dg1dg2dg3.

3

` `

Figure 1: Bipartite 3-colored graph associated to the interaction kernel W(`).

implements the closure constraint (see e.g. [3]) and is responsible for the SU(2) lattice gauge theory
form of the Feynman amplitudes. Finally, the classical (interaction part of the) action S⇤ is given by:

S⇤[ , ] =
�4(⇤)

2

3X

`=1

Z
[

4Y

j=1

dgj ]W(`)(g1,g2,g3,g4) (g1) ̄(g2) (g3) ̄(g4) (4)

+
�6,1(⇤)

3

3X

`=1

Z
[

6Y

j=1

dgj ]X (`)(g1,g2,g3,g4,g5,g6) (g1) ̄(g2) (g3) ̄(g4) (g5) ̄(g6)

+ �6,2(⇤)
3X

`=1

Z
[

6Y

j=1

dgj ]Y(`)(g1,g2,g3,g4,g5,g6) (g1) ̄(g2) (g3) ̄(g4) (g5) ̄(g6)

where the symbols W(`), X (`) and Y(`) are products of delta functions associated to tensor invariant
interactions, and �b(⇤) (b 2 {4, (6, 1), (6, 2)}) are running coupling constants. For instance:

W(`)(g1,g2,g3,g4) = �(g1`g
�1
4` )�(g2`g

�1
3` )

Y

j 6=`

�(g1jg
�1
2j )�(g3jg

�1
4j ) . (5)

Each term in the action S⇤ is conveniently indexed by a so-called bubble, which is a bipartite 3-colored
graph (see [75] and references therein for more on colored graphs). For instance, the kernel W(`) is
associated to the graph shown in Figure 1. Black and white vertices respectively represent fields  
and  ̄, while a line with color index ` 2 {1, 2, 3} pictures the convolution of two fields with respect to
the `th SU(2) copy of the base space. More generally, the interactions involved in the action S⇤ are
associated to the following bubbles4:

` `  !
Z
[

4Y

j=1

dgj ]W(`)(g1,g2,g3,g4) (g1) ̄(g2) (g3) ̄(g4) (6)

`

``

 !
Z
[

6Y

j=1

dgj ]X (`)(g1,g2,g3,g4,g5,g6) (g1) ̄(g2) (g3) ̄(g4) (g5) ̄(g6) (7)

`  !
Z
[

6Y

j=1

dgj ]Y(`)(g1,g2,g3,g4,g5,g6) (g1) ̄(g2) (g3) ̄(g4) (g5) ̄(g6) (8)

where the index ` runs from 1 to 3 and characterizes each bubble (up to automorphisms). Note that
the action (4) is invariant under color permutations, and that the coupling constants �4, �6,1 and �6,2
have been normalized by the number of automorphisms of the bubble they parametrize5.

These three types of interactions are examples of melonic bubbles [22, 9, 15], which form a recur-
sively generated subclass of colored graphs. They play a central role in tensorial theories in that they
generically dominate their large ⇤ regime. In d = 3, the smallest melonic bubble (with two vertices)
is pictured in Figure 2; it represents a mass term. All higher order melonic bubbles can be obtained

4
In the rest of the paper we will freely substitute bubble drawings for the interactions they represent.

5
As usual, this facilitates the computation of combinatorial factors in the Feynman expansion. See [52] for details

about the definition of colored graph automorphism we are using.
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Figure 4: Feynman graph with 4 external legs and 4 vertices.

2.2 Canonical dimensions

Another important quantity for our purpose is the canonical dimension. The reader interested in more
detail may consult [52, 66], we only focus on the key arguments here. As proven in [51], the divergence
degree !(G) of a leading order graph G is given by

!(G) = 3� N(G)
2

� 2n2(G)� n4(G) , (13)

where nk(G) is the number of bubble vertices of valency k in G. For N = 4, ! is bounded by 1, and
melonic graphs containing only order-6 interactions have ! = 1. This indicates that, perturbatively,
�4(⇤) naturally scales as ⇤ in the ultraviolet. We therefore attribute it a canonical dimension [�4] = 1.
More generally, a bubble interaction b of order Nb is associated to a coupling constant �b of dimension:

[�b] := 3� Nb

2
, (14)

in such a way that renormalizable interactions are characterized by [�b] � 0. Including the mass term
in this definition, we have:

[m2] = 2 , [�4] = 1 , [�6,1] = [�6,2] = 0 . (15)

Hence, the dimensionless coupling constants u2, u4, u6,1 and u6,2 are defined as:

u2(⇤) :=
m

2(⇤)

⇤2
, u4(⇤) :=

�4(⇤)

⇤
, u6,1(⇤) := �6,1(⇤) , u6,2(⇤) := �6,2(⇤) . (16)

We will use this dimensionless parametrization from section 3 onwards, in order to obtain well-defined
autonomous systems of renormalization group equations.

3 Functional renormalization group: order 6 truncation

In this section, we introduce the effective average action associated to the field theory defined by (1).
It satisfies a Functional Renormalization Group (FRG) or Wetterich–Morris equation [54, 55], which
can be viewed as a particular realization of Wilson’s renormalization group. After recalling the general
construction of the FRG in the context of tensorial field theories [65, 66, 67, 68, 49]7, we will use a �

6

truncation of the Wetterich–Morris equation to extract approximate renormalization group equations.
For general reviews ans applications of the FRG, we refer the reader to [56, 57, 58, 59, 60, 61, 62].

7
See also [76, 77, 78] for a FRG based on the Polchinski equation [79].
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Renormalization flow of GFT models - 3d example

• FRG analysis at order 6 truncation:

• in the UV (large spins): Gaussian fixed point - two relevant + two marginal repulsive directions

• in the UV: 1-parameter family of non-Gaussian fixed points - probably artefact of truncation

• in the UV: 2 isolated non-Gaussian fixed points: one with three irrelevant directions and one 
relevant direction (FP1); one with three relevant, one irrelevant directions (FP2 - IR fixed point?)

• improvement of truncation (order 8, order 12 for subclass of interactions) suggest that FP1 is stable 
UV fixed point (less evidence for FP2)

• this supports:

• asymptotic safety in UV

• hints for condensation in IR

Tensorial GFT - d=3 , G=SU(2) S. Carrozza, V. Lahoche, ‘16
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Figure 9: Projections of the renormalization group flow onto particular planes of the four-dimensional
'
6 theory space. The black (resp. grey) dot represents the non-Gaussian fixed point FP1 (resp. the

Gaussian fixed point), and the arrows point towards the infrared. Figure 9a: projection onto the plane
{u62 = 0, u61 = u

⇤
61(FP1)}; the boundary in the upper left corner is a singularity of our truncation

(gw(u2)u4 = 6). Figure 9b: projection onto the plane containing the origin, the non-Gaussian fixed
point FP1, and its relevant direction V; w is a (normalized) coordinate along the line connecting the
origin to FP1, and z is a parameter along its orthogonal direction; the red trajectories arise from FP1

in the directions ±V, and V is pointing upwards in this diagram.

has one relevant direction and three irrelevant directions12, while FP2 has three irrelevant directions
and one relevant direction. At this stage, it might be tempting to conjecture that one of them may
play the role of ultraviolet fixed point, the other being an infrared fixed point characterizing one of the
possible phases of the theory. However, the only way to support this hypothesis would be to refine the
truncation and check that fixed points with similar qualitative features are reproduced. In particular,
evidences about the ultraviolet (resp. infrared) nature of a given fixed point may be gathered if its
number of relevant (resp. irrelevant) directions is stable under refinement of the truncation. In the
next sections, we will produce such evidences for FP1 but not for FP2, whose nature will henceforth
remain largely open.

Let us focus on the interesting features of FP1. The vector:

V ⇡ (0.98,�0.18, 0.14, 0.)T (106)

is a normalized relevant eigenvector, with critical exponent approximately equal to 2.7. In Figure 9
are represented two slices of the vector field (��2,��4,��6,1,��6,2). In particular, Figure 9b gives a
good qualitative picture of the influence of FP1 in the theory space. A point in the vicinity of FP1 will
be dragged along one of two possible trajectories, which we highlighted in red (the upper part of the
diagram corresponds to the direction V, and the lower part to �V). This suggests the existence of two
distinct low energy phases, with the one parameter family of models generated by ±V interpolating
between them.

4 Consistency under refinement: order 8 contributions

We now extend the previous truncation up to order 8 melonic interactions. This allows to test the
robustness of the fixed points found at order 6. We will confirm in this regard that the one-dimensional

12
Recall that in this paper, the term relevant (resp. irrelevant) is understood as infrared relevant (resp. irrelevant).
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is a normalized relevant eigenvector, with critical exponent approximately equal to 2.7. In Figure 9
are represented two slices of the vector field (��2,��4,��6,1,��6,2). In particular, Figure 9b gives a
good qualitative picture of the influence of FP1 in the theory space. A point in the vicinity of FP1 will
be dragged along one of two possible trajectories, which we highlighted in red (the upper part of the
diagram corresponds to the direction V, and the lower part to �V). This suggests the existence of two
distinct low energy phases, with the one parameter family of models generated by ±V interpolating
between them.
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We now extend the previous truncation up to order 8 melonic interactions. This allows to test the
robustness of the fixed points found at order 6. We will confirm in this regard that the one-dimensional
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Renormalization group flow of SU(2) GFTs [SC, Lahoche ’16; SC, Lahoche, Oriti ’17]

Wetterich (exact) equation ! truncated non-perturbative flows e.g. '6
:

Phase A

Phase B

⌥⌃ ⌅⇧) Non-perturbative UV fixed point with 1 IR-relevant direction.

This statement is robust under refinement of the truncations:

d = 3 d = 4

n 4 6 8 10 12

✓1 2.5 2.7 2.8 2.9 3.0
✓2 �0.37 �0.31 �0.28 �0.28 �0.31
✓3 – �1.7 �1.6 �1.6 �1.7
✓4 – – �4.0 �4.1 �4.3
✓5 – – – �6.6 �6.7
✓6 – – – – �9.5
⌘ �0.70 �0.82 �0.94 �1.1 �1.2

n 4 6 8 10 12

✓1 2.1 2.2 2.3 2.4 2.5
✓2 �0.42 �0.33 �0.25 �0.16 �0.11
✓3 – �1.5 �1.3 �1.3 �1.3
✓4 – – �3.4 �3.2 �3.4
✓5 – – – �5.5 �5.6
✓6 – – – – �8.0
⌘ �0.64 �0.71 �0.77 �0.84 �0.95

Sylvain Carrozza (Perimeter Institute) Spin foam renormalization à la GFT Loops 2017 – Warsaw 16 / 22
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a brief survey of results



GFT perturbative renormalisation

GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

PERTURBATIVE GFT RENORMALIZATION

radiative corrections to the GFT 2-point function of the BF GFT models

Ben Geloun, Bonzom, arXiv:1101.4294 [hep-th]

g1

g2
g3

g′1
g′2
g′3

h1

h2

h3

two leading divergences:
a mass renormalization

a divergence proportional to the second derivatives of the propagator

this needs to be balanced by a new counter-term in the GFT Boulatov action:

m2
Z

[dg]φ(g1, g2, g3) →

Z
[dg]φ(g1, g2, g3)

"
3X

i=1

∆i + m2

#

φ(g1, g2, g3)

similar (and higher) derivative divergences in higher dimensions
BF GFT model could be fixed point of more general GFT dynamics - attractive or
repulsive? role of symmetries? - see Bianca’s talk

analogous calculations for EPRL model (Perini, Roveli, Speziale, arXiv:0810.1714 [gr-qc])

need to tackle intensively all 4d gravity models!!!

perturbative GFT renormalization vs renormalization of discrete gravity?

what is the relevant notion of locality, if any? (Rivasseau, arXiv:1103.1900 [gr-qc])

32 / 41

A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Graphs

The amplitudes are indexed by (d + 1)-colored graphs, obtained by
connecting d-bubble vertices through propagators (dotted, color-0 lines).
Example: 4-point graph with 3 vertices and 6 (internal) lines.

Nomenclature:
L(G) = set of (dotted) lines of a graph G.
Face of color (0�) = connected set of (alternating) color-0 and color-� lines.
Fint(G) (resp. Fext(G)) = set of internal (resp. external) i.e. closed (resp.
open) faces of G.

Sylvain Carrozza Renormalization of Tensorial Group Field Theories: U(1) Models in Four Dimensions

A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Locality as tensor invariance

Assume S is a tensor invariant, because:
combinatorial control over topologies
analytical tool: 1/N expansion
universal properties

More precisely, assume S to be a finite sum of connected tensor
invariants, indexed by d-colored graphs (d-bubble):

S(�,�) =
�

b�B

tbIb(�,�) .

d-colored graphs are regular (valency d), bipartite,
edge-colored graphs.
Correspondence with tensor invariants:

white (resp. black) dot � field (resp. complex
conjugate field);
edge of color ⌅ � convolution of ⌅-th indices of �
and �.

�
[dgi ]

12�(g1, g2, g3, g4)�(g1, g2, g3, g5)�(g8, g7, g6, g5)

�(g8, g9, g10, g11)�(g12, g9, g10, g11)�(g12, g7, g6, g4)

Sylvain Carrozza Renormalization of Tensorial Group Field Theories: U(1) Models in Four Dimensions

towards renormalizable 4d gravity simplicial GFT models:
• calculation of some radiative corrections

• finiteness results in 3d simplicial models (Boulatov with Laplacian kinetic term)

• renormalizable TGFT models (3d, 4d, and higher - multi scale analysis) - Laplacian + tensorial interactions

—> with gauge invariance 
—> non-abelian ( SU(2) )
—> on homogeneous spaces (towards TGFTs for 4d QG): first steps
————> generic asymptotic freedom/safety

T. Krajewski et al., ’10; A. Riello, ’13; V. Bonzom, B. Dittrich, ’15; P. Dona’, ‘17 ; M. Finocchiaro, to appear 

Ben Geloun, Bonzom, ’11; Ben Geloun, ‘13

Ben Geloun, Rivasseau, ’11
Carrozza, DO, Rivasseau, ’12. ‘13

Lahoche, DO, ’15

Ben Geloun, ’12; Carrozza, ’14; Carrozza, Lahoche, ‘16

see poster by Finocchiaro

• Hopf algebra methods in TGFT renormalization
M. Raasakka, A. Tanasa, ’13; R. Cochou, V. Rivasseau, A. Tanasa, ‘17

Γ γ

∆′

!→
γ′

Γ γ/γ′

⊗
γ′

+

Γ/(γ/γ′)

⊗

γ
γ′

2

Figure 3: An example of the coproduct structure for λφ4-model.

Notice that here the sum runs over all disjoint unions γ = ∪iγi ∈ ∪Gω
sd of superficially

divergent disjoint 1PI subgraphs γi of Γ. Since ∆ is an algebra homomorphism, it may be

extended to H. It may be proved

Lemma 2.2 ([7], Theorem 1.27). ∆ : H → H⊗H is a coassociative coproduct.

The counit of H with respect to ∆ is given by the linear extension of ϵ : G → C such

that ϵ(1) = 1 and ϵ(Γ) = 0 for all Γ ≠ 1. H equipped with the above structure thus forms

a bialgebra.

Moreover, we have a natural grading for the elements of H given by the number of

internal edges, which is compatible with the coproduct ∆. Clearly, H(0) = C1 = u(C).

Thus, H constitutes a graded connected bialgebra, and accordingly we have

Theorem 2.1 ([7], Theorem 1.27). (H, u,m, ϵ,∆, S) is a Hopf algebra, where the antipode

S is given by the formula (13) (or (14)).

Consequently, the combinatorial algebraic properties of Feynman graphs and ampli-

tudes join their forces in the following theorem by Connes and Kreimer [6].

Theorem 2.2 ([6]). For a local perturbatively renormalizable QFT model the renormalized

Feynman amplitudes are given by the formula

φR(Γ) = Sφ
R(φ(Γ)) ⋆ φ(Γ) , (16)

where

Sφ
R(φ(Γ)) = −R[φ(Γ)]−R

⎡

⎢

⎢

⎣

∑

γ!Γ
γ∈Gω

sd

Sφ
R(φ(γ))φ(Γ/γ)

⎤

⎥

⎥

⎦

(17)

is given through recursion. Here, the R-operator defines the corresponding renormalization

scheme. Notice that we have Sφ
R(φ(Γ)) = −R(φ(Γ)) for Γ without superficially divergent

subgraphs, which facilitates the recursion.

Finally, let us describe the dual operation to subgraph contraction.
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GFT (and friends) non-perturbative renormalisation
• GFT constructive analysis

• FRG analysis of (discrete gravity) tensor models and SYK-like tensor models/QFTs

• TGFT non-perturbative renormalization (e.g. FRG analysis ala Wetterich-Morris)

non-perturbative resummation of perturbative (SF) series
variety of techniques:

• intermediate field method (loop-vertex expansion)
• Borel summability

Benedetti, Ben Geloun, DO, Martini, Lahoche, Carrozza, Ousmane-Samary, Duarte Pereira, ….

Freidel, Louapre, Noui, Magnen, Smerlak, Gurau, Rivasseau, Tanasa, Dartois, Delpouve, …..

see talks by Koslowski, Carrozza, Ben Geloun

Benedetti, Ben Geloun, Carrozza, Gurau, Rivasseau, Sfondrini, Tanasa, Wulkenhaar, ….Eichhorn, Koslowski, Duarte Pereira, ….

comparison with results from resummation of matrix 
models (FRG counterpart of double scaling limit)

see posters by Castro, Duarte Pereira, Lumma, Perez Sanchez



GFT non-perturbative renormalisation
recent results:

FRG for (tensorial) GFT models (similar to matrix/tensor models but distinctively field-theoretic)
Eichhorn, Koslowski, ‘14

key challenges:


• scaling dimensions of couplings (depend on 
combinatorics of corresponding interactions)


• non-autonomous systems of flow equations


• more subtle thermodynamic limit


• combinatorics

• epsilon-expansion Carrozza, ‘14

• Polchinski formulation based on SD equations

• general set-up for Wetterich-Morris formulation based on effective action
• RG flow and phase diagram (in simple truncations) for:

• TGFT on compact U(1)^d (with gauge invariance)
• TGFT on non-compact R^d (with gauge invariance)
• TGFT on SU(2)^3 (with gauge invariance).    Carrozza, Lahoche, ’16  
• models/truncations beyond melonic sector

Benedetti, Ben Geloun, DO, ’14 ; Ben Geloun, Martini, DO, ’15, ’16, 
Benedetti, Lahoche, ’15; Lahoche, Ousmane-Samary, ’16; ……

Krajewski, Toriumi, ‘14

J. Ben Geloun, T. Koslowski, A. Duarte Pereira, DO, ‘18
S. Carrozza, V. Lahoche, DO, ‘17



GFT non-perturbative renormalisation
recent results:

FRG for (tensorial) GFT models (similar to matrix/tensor models but distinctively field-theoretic)
Eichhorn, Koslowski, ‘14

• Polchinski formulation based on SD equations

• general set-up for Wetterich-Morris formulation based on effective action
• RG flow and phase diagram (in simple truncations) for:

• TGFT on compact U(1)^d (with gauge invariance)
• TGFT on non-compact R^d (with gauge invariance)
• TGFT on SU(2)^3 (with gauge invariance).    Carrozza, Lahoche, ’16  
• models/truncations beyond melonic sector

Benedetti, Ben Geloun, DO, ’14 ; Ben Geloun, Martini, DO, ’15, ’16, 
Benedetti, Lahoche, ’15; Lahoche, Ousmane-Samary, ’16; ……

Krajewski, Toriumi, ‘14
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FIG. 4. The flow diagram at small N . The blue dot is the GFP, while the red one is the NGFP at {m̄⇤
, �̄

⇤}. Ordinary
trajectories are in blue, while the eigen-perturbations for the GFP are in green and those for the NGFP are in brown. Arrows
point towards the UV, i.e. growing N .

However, we should stress that such NGFPs were obtained from di↵erent rescaling of �, and going back to the
original coupling via (38), we notice that for N ! 0 the NGFP (41) corresponds to �

⇤ = 0, while the one in (28) was
at �⇤ 6= 0.

This observation could also explain the integer critical exponents. Even though m̄N and �̄N have a nontrivial fixed
point, the scaling (24) and (38) implies that at such fixed point the renormalised mass and the renormalised coupling
(i.e. their value in the limit N ! 0) are zero. Once again, modulo an exchange in the scaling dimensions of mass
and coupling, the same conclusion can be reached for the standard Wilson-Fisher fixed point in three dimensions.
However, in such a case we can easily study higher-order truncations, and find that also the coupling g6 of the �

6

interaction reaches a fixed point, and being g6 dimensionless in d = 3, it remains finite also as we remove the IR
cuto↵. That the Wilson-Fisher fixed point theory is truly an interacting one, can also be inferred more reliably from
the local potential approximation or the next orders in the derivative expansion [38]. In the Tensorial GFT case, on
the other hand, we are not able to do a full local potential approximation, but from our truncation we can easily
guess that the IR scaling dimension for the coupling of a general interaction is (B.8) with ↵ = 0, and hence all such
couplings would flow to zero at an IR fixed point. The non-trivial fixed point is really a trivial one in disguise. We
also notice that such scaling dimensions for the couplings are the one we would get for standard couplings in zero
dimensions, where we expect no phase transition and no non-trivial fixed point.

Figure 4 might seem to contradict such expectation at first, but in fact a similar flow diagram is found by analytically
continuing the usual beta equations to d = 0 (which in fact have the same structure as (39)-(40)). The explanation of
the apparent paradox is again found by remembering that in the broken phase we should better use a more appropriate
truncation, such as V (�) = �(�2 � �

2
0)

2. Then one finds that in zero dimensions the non-trivial fixed point is IR
attractive for both � and �

2
0, and it lies at �

2
0 < 0, meaning that actually there is always symmetry restoration in

the deep IR. Although we cannot at the moment repeat this analysis from scratch in the Tensorial GFT case, the
similarity of the equations in the symmetric case, together with the scaling argument, give us confidence that the
same is true here.

The fact that the zero modes surviving in the deep IR lead to an e↵ective zero-dimensional theory is very reminiscent
of what observed in [57] for scalar field theory on a spherical background. Just like in that case, also in our case we
can trace back the origin of such phenomenon to the compactness of the background space, which in [57] was S

d,
while here is (S1)d ' T

d.

All in all, for a quantum field theory on a compact space we would not expect a phase transition, on general grounds,
and our results seem to confirm this in the Tensorial GFT case as well, and the apparent NGFP is most likely an

generically (so far):
• asymptotic freedom/safety
• hints of broken or condensate phase
(non-trivial minimum of classical potential)

J. Ben Geloun, T. Koslowski, A. Duarte Pereira, DO, ‘18
S. Carrozza, V. Lahoche, DO, ‘17
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• TGFT on non-compact R^d (with gauge invariance)
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• Landau approach to phase transitions
• inequivalent condensate representations of quantum GFT algebra    
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Krajewski, Toriumi, ‘14

14

0.00 0.01 0.02 0.03 0.04

!1.0

!0.8

!0.6

!0.4

!0.2

0.0

0.2

ΛN

m
N

FIG. 4. The flow diagram at small N . The blue dot is the GFP, while the red one is the NGFP at {m̄⇤
, �̄

⇤}. Ordinary
trajectories are in blue, while the eigen-perturbations for the GFP are in green and those for the NGFP are in brown. Arrows
point towards the UV, i.e. growing N .

However, we should stress that such NGFPs were obtained from di↵erent rescaling of �, and going back to the
original coupling via (38), we notice that for N ! 0 the NGFP (41) corresponds to �

⇤ = 0, while the one in (28) was
at �⇤ 6= 0.

This observation could also explain the integer critical exponents. Even though m̄N and �̄N have a nontrivial fixed
point, the scaling (24) and (38) implies that at such fixed point the renormalised mass and the renormalised coupling
(i.e. their value in the limit N ! 0) are zero. Once again, modulo an exchange in the scaling dimensions of mass
and coupling, the same conclusion can be reached for the standard Wilson-Fisher fixed point in three dimensions.
However, in such a case we can easily study higher-order truncations, and find that also the coupling g6 of the �

6

interaction reaches a fixed point, and being g6 dimensionless in d = 3, it remains finite also as we remove the IR
cuto↵. That the Wilson-Fisher fixed point theory is truly an interacting one, can also be inferred more reliably from
the local potential approximation or the next orders in the derivative expansion [38]. In the Tensorial GFT case, on
the other hand, we are not able to do a full local potential approximation, but from our truncation we can easily
guess that the IR scaling dimension for the coupling of a general interaction is (B.8) with ↵ = 0, and hence all such
couplings would flow to zero at an IR fixed point. The non-trivial fixed point is really a trivial one in disguise. We
also notice that such scaling dimensions for the couplings are the one we would get for standard couplings in zero
dimensions, where we expect no phase transition and no non-trivial fixed point.

Figure 4 might seem to contradict such expectation at first, but in fact a similar flow diagram is found by analytically
continuing the usual beta equations to d = 0 (which in fact have the same structure as (39)-(40)). The explanation of
the apparent paradox is again found by remembering that in the broken phase we should better use a more appropriate
truncation, such as V (�) = �(�2 � �

2
0)

2. Then one finds that in zero dimensions the non-trivial fixed point is IR
attractive for both � and �

2
0, and it lies at �

2
0 < 0, meaning that actually there is always symmetry restoration in

the deep IR. Although we cannot at the moment repeat this analysis from scratch in the Tensorial GFT case, the
similarity of the equations in the symmetric case, together with the scaling argument, give us confidence that the
same is true here.

The fact that the zero modes surviving in the deep IR lead to an e↵ective zero-dimensional theory is very reminiscent
of what observed in [57] for scalar field theory on a spherical background. Just like in that case, also in our case we
can trace back the origin of such phenomenon to the compactness of the background space, which in [57] was S

d,
while here is (S1)d ' T

d.

All in all, for a quantum field theory on a compact space we would not expect a phase transition, on general grounds,
and our results seem to confirm this in the Tensorial GFT case as well, and the apparent NGFP is most likely an

generically (so far):
• asymptotic freedom/safety
• hints of broken or condensate phase
(non-trivial minimum of classical potential)

J. Ben Geloun, T. Koslowski, A. Duarte Pereira, DO, ‘18
S. Carrozza, V. Lahoche, DO, ‘17

A. Pithis, J. Thurigen, ’18

A. Kegeles, DO, ‘17



GFT renormalization:

key open issues and new directions



(T)GFT Renormalization with simplicity constraints

• Simple group structure is lost; symmetries are broken; amplitudes much more involved


• No complete power counting of divergences - results on various classes of diagrams


• Main difficulty: dominant configurations are not just flat connections (richer simplicial 
geometry, related to Regge geometries found in semi-classical spin foam amplitudes)


• Main difficulty 2: do not know what is relevant (large enough) theory space 

Riello, Bonzom, Dittrich, 
Finocchiaro, Dona, …

Barrett, Williams, Freidel, 
Conrady, Pereira, 
Hellmann, Han, Zhang, …

Simplicity constraints, imposed on topological BF models on Spin(4) or SL(2,C), ensure “geometricity”


GFT amplitudes become 4d simplicial gravity path integrals - various models

Key open issues: RG flow of more (T)GFT models

see Finocchiaro’s poster

rely on (and extend) work on GFT symmetries A. Kegeles, DO, ’15, ‘16



Key open issues: RG flow of more (T)GFT models

(T)GFT Renormalization with additional local directions

Coupling simplicial geometry with (minimally coupled) scalar fields (simpler for free, massless case):

and the ' field variable can be Taylor-expanded in its scalar field argument around �.
Then, after evaluating the integral over u, the kinetic term becomes

K =
1X

n=0

Z
dgvdgwd� '̄(gv,�)K

(2n)
2 (gv, gw)

@2n

@�2n
'(gw,�), (33)

where

K(2n)
2 (gv, gw) =

Z
du

u2n

(2n)!
K2(gv, gw; u

2). (34)

Note that all of the odd terms in the Taylor expansion do not contribute to the sum in (33)
since the integral over u of an odd power of u multiplying the even function K2(gv, gw, u2)
gives zero.

The functional form of the K(2n)
2 (gv, gw), which is of course determined by the kinetic

term in the GFT action, encodes order by order in derivatives of � how the quantum
geometric and matter degrees of freedom propagate. In particular, their exact form could
be determined by ensuring that the GFT Feynman amplitudes match term by term the
discrete path integral for gravity coupled to a minimally coupled massless scalar field; we
leave this analysis for future work.

It will not be necessary to determine the exact functional form of the K(2n)
2 (gv, gw) for

our purposes. Instead, having ensured that the GFT action has the correct symmetries,
we will work in the small derivative limit of the scalar field (i.e., where di↵erences in
the scalar field are small compared to the Planck mass), and truncate the kinetic term
in the action to the lowest two orders, keeping only the terms corresponding to n = 0
and n = 1 in the sum (33). Then, it will be possible to obtain some constraints on
their form by studying the dynamics of condensate states of this GFT model —which as
shall be explained shortly, are expected to capture the degrees of freedom of the spatially
flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) space-time— and comparing these
dynamics, in the appropriate semi-classical limit, to the Friedmann equations of general
relativity.

Finally, here we are interested in the GFT model based on the EPRL spin foam model
(whose kinetic and interaction terms in the vacuum case were given respectively in (15)
and (16)) with a minimally coupled massless scalar field. It is easy to add repeat the
procedure outlined in this section starting from the GFT action for the vacuum EPRL
model, this gives (in the spin representation)

S = K(0) +K(2) + V + V †, (35)

with

K(0) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)'jv◆
mv

(�) (K (0)
2 )jv◆mv

, (36)
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Locating the discretization on the dual node to the simplicial discretization means
that the scalar field has a single value over any 4-simplex. This directly implies that the
five fields in the GFT interaction —which correspond to the five tetrahedra in a single
4-simplex— all share the same value of the scalar field. For this reason the interaction
term must impose that the value of the scalar be the same in all of the five interacting
fields, in which case the (first) interaction term has the form

V =

Z  5Y

a=1

dgvad�va

!
V5(gv1 , . . . , gv5 ;�v1)'(gv1 ,�v1)

5Y

a=2

�(�va � �v1)'(gva ,�va), (24)

where the Dirac � distributions are shown explicitly for the sake of clarity. Clearly, the
integrals over �v2 ,�v3 ,�v4 and �v5 are easily evaluated, giving

V =

Z  5Y

a=1

dgva

!
d�V5(gv1 , . . . , gv5 ;�)

5Y

a=1

'(gva ,�). (25)

The second interaction term is simply the adjoint of this one. It is clear that, for GFT
models with this interaction term, the scalar field degrees of freedom enter locally in the
GFT action (unlike the quantum geometric degrees of freedom that are non-local), and
this will simplify a number of calculations.

Since the scalar field propagates along dual links between neighbouring 4-simplices,
the gradients of the scalar field will be encoded in the GFT kinetic term, which in general
will have the form

K =

Z
dgvdgwd�wd�v '̄(gv,�v)K2(gw, gv;�w,�v)'(gw,�w). (26)

This is the completely general form of a GFT model for quantum gravity coupled to a
real scalar field, whose action is given by

S = K + V + V †, (27)

which follows directly from the discretization strategy described above.

C. A Massless Scalar Field

We will now focus on the case of the simplest scalar field coupled to gravity: a mini-
mally coupled, massless scalar field. While this is a particularly simple case, it is nonethe-
less enough in order to extract non-trivial cosmological dynamics directly from the GFT
model. Furthermore, a minimally coupled, massless scalar field in a homogeneous space-
time acts like a sti↵ perfect fluid which is of particular interest in early universe cosmology

20

DO, Sindoni, Wilson-Ewing, ’16; Y. Ling, 
DO, M. Zhang, ’17; S. Gielen, DO, ‘17

scalar fields used as “embedding coordinates” —> similar to standard QFTs in flat space with additional 
“internal” (tensorial) non-local data (quantum geometric) 


 very similar to SYK-like tensorial models

• What is the RG flow of these “mixed models”? dominant diagrams? fixed points? phases? 


• scalar field momentum (energy) as running scale —> different from usual (T)GFTs


• issue: how do matter fields modify the RG flow of “pure gravity” GFTs?



Key open issues: GFT vs lattice SF renormalization
recall: Feynman amplitudes = spin foam models/lattice gauge theories

RG flow of spin foam models can be studied with LGT methods cut-off in representations


RG scale is “complexity of lattice”, 
flow is driven by refinement 

Consistency conditions

embedding of
boundary 
Hilbert 
spaces

Boundary Hilbert space
with high complexity
wave functions

…

Boundary Hilbert space
with low complexity
wave functions
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Amplitudes flow by requiring consistency under restriction to coarser boundary states For the amplitude we demand consistency conditions:
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restricts  to 

* Corresponds to a complete renormalization trajectory,  

        with scale given by complexity parameter.

A (complete) family of  consistent amplitudes defines a theory*  of  quantum gravity.

The consistent boundary formulation
[BD NJP 12, BD 14 (Review)]

If this holds for arbitrary refinements: defines continuum amplitudes.

Dittrich, Bahr, Steinhaus, Delcamp, …

see Bianca’s talk
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* Corresponds to a complete renormalization trajectory,  

        with scale given by complexity parameter.

A (complete) family of  consistent amplitudes defines a theory*  of  quantum gravity.

The consistent boundary formulation
[BD NJP 12, BD 14 (Review)]

If this holds for arbitrary refinements: defines continuum amplitudes.
For GFT models with same SF amplitudes, how to compare the RG scheme and the resulting phase diagram?

Dittrich, Bahr, Steinhaus, Delcamp, …

see Bianca’s talk



Key open issues: GFT vs lattice SF renormalization
recall: Feynman amplitudes = spin foam models/lattice gauge theories

RG flow of spin foam models can be studied with LGT methods cut-off in representations
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restricts  to 

* Corresponds to a complete renormalization trajectory,  

        with scale given by complexity parameter.

A (complete) family of  consistent amplitudes defines a theory*  of  quantum gravity.

The consistent boundary formulation
[BD NJP 12, BD 14 (Review)]

If this holds for arbitrary refinements: defines continuum amplitudes.
For GFT models with same SF amplitudes, how to compare the RG scheme and the resulting phase diagram?

Dittrich, Bahr, Steinhaus, Delcamp, …

contraction of (divergent) GFT subgraphs + absorption in effective vertices ~ coarse-graining of SF lattices

spin foam amplitude consistency under coarse graining = RG consistency of GFT Feynman amplitudes

see Bianca’s talk
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* Corresponds to a complete renormalization trajectory,  

        with scale given by complexity parameter.

A (complete) family of  consistent amplitudes defines a theory*  of  quantum gravity.

The consistent boundary formulation
[BD NJP 12, BD 14 (Review)]

If this holds for arbitrary refinements: defines continuum amplitudes.
For GFT models with same SF amplitudes, how to compare the RG scheme and the resulting phase diagram?

Dittrich, Bahr, Steinhaus, Delcamp, …

Two aspects should become more central in (T)GFT RG analysis (e.g. using tensor network methods):


• combinatorial structure of boundary states and effects on RG flow


• combinatorial complexity as co-determining the “scale” of the RG flow

contraction of (divergent) GFT subgraphs + absorption in effective vertices ~ coarse-graining of SF lattices

spin foam amplitude consistency under coarse graining = RG consistency of GFT Feynman amplitudes

see Bianca’s talk



Key open issues: how to extract physics?

order parameters?

suppose we have the full RG flow of a TGFT model (full continuum theory); how do we interpret it, physically? 
how do we translate it in the language of gravity, geometry, effective field theory?

many related questions:

which observables should we focus on?

what is a spacetime metric, from (T)GFT perspective?
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FIG. 4. The flow diagram at small N . The blue dot is the GFP, while the red one is the NGFP at {m̄⇤
, �̄

⇤}. Ordinary
trajectories are in blue, while the eigen-perturbations for the GFP are in green and those for the NGFP are in brown. Arrows
point towards the UV, i.e. growing N .

However, we should stress that such NGFPs were obtained from di↵erent rescaling of �, and going back to the
original coupling via (38), we notice that for N ! 0 the NGFP (41) corresponds to �

⇤ = 0, while the one in (28) was
at �⇤ 6= 0.

This observation could also explain the integer critical exponents. Even though m̄N and �̄N have a nontrivial fixed
point, the scaling (24) and (38) implies that at such fixed point the renormalised mass and the renormalised coupling
(i.e. their value in the limit N ! 0) are zero. Once again, modulo an exchange in the scaling dimensions of mass
and coupling, the same conclusion can be reached for the standard Wilson-Fisher fixed point in three dimensions.
However, in such a case we can easily study higher-order truncations, and find that also the coupling g6 of the �

6

interaction reaches a fixed point, and being g6 dimensionless in d = 3, it remains finite also as we remove the IR
cuto↵. That the Wilson-Fisher fixed point theory is truly an interacting one, can also be inferred more reliably from
the local potential approximation or the next orders in the derivative expansion [38]. In the Tensorial GFT case, on
the other hand, we are not able to do a full local potential approximation, but from our truncation we can easily
guess that the IR scaling dimension for the coupling of a general interaction is (B.8) with ↵ = 0, and hence all such
couplings would flow to zero at an IR fixed point. The non-trivial fixed point is really a trivial one in disguise. We
also notice that such scaling dimensions for the couplings are the one we would get for standard couplings in zero
dimensions, where we expect no phase transition and no non-trivial fixed point.

Figure 4 might seem to contradict such expectation at first, but in fact a similar flow diagram is found by analytically
continuing the usual beta equations to d = 0 (which in fact have the same structure as (39)-(40)). The explanation of
the apparent paradox is again found by remembering that in the broken phase we should better use a more appropriate
truncation, such as V (�) = �(�2 � �

2
0)

2. Then one finds that in zero dimensions the non-trivial fixed point is IR
attractive for both � and �

2
0, and it lies at �

2
0 < 0, meaning that actually there is always symmetry restoration in

the deep IR. Although we cannot at the moment repeat this analysis from scratch in the Tensorial GFT case, the
similarity of the equations in the symmetric case, together with the scaling argument, give us confidence that the
same is true here.

The fact that the zero modes surviving in the deep IR lead to an e↵ective zero-dimensional theory is very reminiscent
of what observed in [57] for scalar field theory on a spherical background. Just like in that case, also in our case we
can trace back the origin of such phenomenon to the compactness of the background space, which in [57] was S

d,
while here is (S1)d ' T

d.

All in all, for a quantum field theory on a compact space we would not expect a phase transition, on general grounds,
and our results seem to confirm this in the Tensorial GFT case as well, and the apparent NGFP is most likely an

• useful insights from (causal) dynamical triangulations


• insights from LQG 


• comparison with SYK-like tensorial GFTs
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the other hand, we are not able to do a full local potential approximation, but from our truncation we can easily
guess that the IR scaling dimension for the coupling of a general interaction is (B.8) with ↵ = 0, and hence all such
couplings would flow to zero at an IR fixed point. The non-trivial fixed point is really a trivial one in disguise. We
also notice that such scaling dimensions for the couplings are the one we would get for standard couplings in zero
dimensions, where we expect no phase transition and no non-trivial fixed point.

Figure 4 might seem to contradict such expectation at first, but in fact a similar flow diagram is found by analytically
continuing the usual beta equations to d = 0 (which in fact have the same structure as (39)-(40)). The explanation of
the apparent paradox is again found by remembering that in the broken phase we should better use a more appropriate
truncation, such as V (�) = �(�2 � �

2
0)

2. Then one finds that in zero dimensions the non-trivial fixed point is IR
attractive for both � and �

2
0, and it lies at �

2
0 < 0, meaning that actually there is always symmetry restoration in

the deep IR. Although we cannot at the moment repeat this analysis from scratch in the Tensorial GFT case, the
similarity of the equations in the symmetric case, together with the scaling argument, give us confidence that the
same is true here.

The fact that the zero modes surviving in the deep IR lead to an e↵ective zero-dimensional theory is very reminiscent
of what observed in [57] for scalar field theory on a spherical background. Just like in that case, also in our case we
can trace back the origin of such phenomenon to the compactness of the background space, which in [57] was S

d,
while here is (S1)d ' T

d.

All in all, for a quantum field theory on a compact space we would not expect a phase transition, on general grounds,
and our results seem to confirm this in the Tensorial GFT case as well, and the apparent NGFP is most likely an

+ use group-data and simplicial geometry

• recently developed strategy: cosmology from GFT (condensate) hydrodynamics

• interpret GFT hydrodynamic equations as non-linear version of “quantum cosmology”

models where these amplitudes exactly match any de-
sired spin foam amplitudes (e.g., those directly motivated
from LQG). These are easily generated starting from sim-
ple action functionals, that we split into linear and non-
linear parts as S[', '̄] = K[', '̄] + V [', '̄], with the ki-
netic term encoding the edge amplitude of the spin foam
model and having the form (with a minimally coupled
massless scalar field)

K =
X

j,m,◆

Z
d�1d�2


'̄
jv1 ,◆1
mv1

(�1) '
jv2 ,◆2
mv2

(�2)

⇥K
jv1 ,jv2 ,◆1,◆2
mv1 ,mv2

((�1 � �2)
2)

�
, (3)

while the potential V [', '̄] encodes the vertex amplitude,
is of fifth order in the field variables ' and '̄ (for simpli-
cial GFT models) and is local in the scalar field �.

It is convenient to rewrite the kinetic term as a deriva-
tive expansion in � in the field variable '

jv2 ,◆2
mv2

(�2) around
�2 = �1 = �, giving

K =
1X

n=0

X

j,m,◆

Z
d� '̄

jv1 ,◆1
mv1

(�)'
jv2 ,◆2
mv2

(�)(K(2n))j,◆m , (4)

where the notation on Kj,◆
m has been compressed, and

(K(2n))j,◆m =

Z
du

u2n

(2n)!
Kj,◆

m (u2). (5)

In cases where the di↵erence between �1 and �2 in (3) is
small compared to the Planck mass (i.e., a slowly chang-
ing scalar field), a good approximation to the full kinetic
term can be provided by a truncation of the derivative
expansion. This is the case we will consider here, keeping
only the first two non-trivial terms n = 0 and n = 1.

Finally, for a GFT model with the action S[', '̄], the
quantum equations of motion for a state | i are simply

c�S
�'̄

| i = 0, (6)

together with the conjugate of this equation.
As with any interacting field theory, it is not possible

to obtain the general solution of these equations. The
particular formulation given by GFT, however, allows us
to make use of ideas and methods that are used in analo-
gous problems in condensed matter physics. We will seek
some state that approximates a full solution state | i, at
least for a restricted set of observables. The restriction to
the case of homogeneous cosmologies suggests that these
states should be modeled with a wave function homo-
geneity principle [8–10, 14], i.e., by condensate states in
which the wave functions associated to the each of the
quanta are the same.

Isotropic Condensates — The simplest way to
model such cosmological states, including an arbitrary
large number of quanta, is to use the field coherent states

|�i = e�k�k2/2 exp

0

@
X

j,m,◆

�jv,◆
mv

(�)('̂†)jv,◆mv
(�)

1

A |0i, (7)

where �jv,◆
mv

(�) is the condensate wave function and
k�k2 =

R
d� k�(�)k2. An important point here is that

the condensate wave function is not normalized: rather
the norm of �jv,◆

mv
(�),

k�(�)k2 =
X

j,m,◆

|�jv,◆
mv

(�)|2, (8)

is the expectation value of the number operator N̂(�) on
the condensate state |�i at the relational time �.
These states have been extensively studied in the GFT

context [8–10] as approximate solutions of the quantum
equations of motion. As they neglect correlations be-
tween di↵erent quanta (and thus the connectivity of the
spin network nodes), these are approximate solutions
only in regimes in which the interaction term in (6) is
subdominant.
Since we are only interested in the homogeneous and

isotropic degrees of freedom, it is possible to choose a par-
ticularly simple form of the condensate wave function by
imposing that the condensate wave function be isotropic,
i.e., that all of the spin labels be equal, and that the other
geometric indices be uniquely defined by j. Hence, for an
isotropic condensate wave function,

�jv,◆
mv

(�) = Cjv,◆
mv

· �j(�), (9)

where the Cjv,◆
mv

are uniquely determined by the value
of j (in particular, the intertwiner is chosen so that it
is an eigenvalue of the LQG volume operator and that
its eigenvalue is the largest possible for a spin network
node with four links all coloured by j, see [12] for de-
tails). Therefore, the coarse-grained degrees of freedom
of isotropic GFT condensate states are entirely captured
by the functions �j(�), one for each spin.
The e↵ective dynamics are obtained by asking that the

condensate states (7) approximately solve the quantum
equations of motion (6). To be specific, we assume a sim-
ple Gross–Pitaevskii form of the dynamics, obtained by
taking the expectation value of the equations of motion:

h�|
c�S
�'̄

|�i = 0, (10)

which is clearly a weaker condition than (6).
For the isotropic GFT condensate states (7), and for

a GFT model with a minimally coupled massless scalar
field whose geometric contribution is based on the Engle–
Livine–Pereira–Rovelli spin foam model [13] (the most
developed one for 4D Lorentzian quantum gravity), (10)
gives the equation of motion for the �j(�)

Aj@
2
��j(�)�Bj�j(�) + wj �̄j(�)

4 = 0. (11)

It is clear that the scalar field � is acting as a relational
clock here and can be interpreted as ‘time’. This will
be important when extracting the coarse-grained cosmo-
logical dynamics from this condensate state. Here Aj

2

• compute collective observables, e.g. “total volume” + obtain dynamical equations for them
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