Holographic Signatures of Resolved Cosmological Singularities: Numerical Investigations

Fabio M. Mele

based on

arXiv:1804.01387

with N. Bodendorfer & J. Münch

Quantum Gravity meets Lattice QFT Trento, 3-7 September 2018

Introduction: QG and Holography

Holographic aspects of QG actively investigated.

Main research directions (in LQG)

1. Dual statistical models from 3+0 QG partition function

```
[Costantino '11; Dittrich, Hnybida '13; Bonzom, Costantino, Livine '15; Dittrich, Goeller,
Livine, Riello '17]
```

2. Spin networks, tensor networks and holographic entanglement entropy

```
[Han, Hung '16; Han, Huang '17; Chirco, Oriti, Zhang '17]
```

3. Holography in symmetry-reduced models

```
[Ashtekar, Wilson-Ewing '08; Bodendorfer, Schäfer, Schliemann '16; Bodendorfer, Mele, Münch '18]
```

Related work: [Freidel '08; Bodendorfer, Thiemann, Thurn '11; Bodendorfer '15; Freidel, Perez, Pranzetti '16; Smolin '16; Livine '17, . . .]

In this talk we will focus on the third direction.

Gauge/Gravity Duality in a Nutshell

[Maldacena '97; Gubser, Klebanov, Polyakov '98; Witten '98]

Holographic Principle ['t Hooft '93; Susskind '95; Bousso '02; ...]

Duality between gauge and (quantum) gravity theories

- ► Tools for QFT (e.g, condensed matter, QCD)
- ► Quantum gravity models

QG for AdS/CFT

- Gauge/Gravity mainly understood in the classical (super)gravity regime
- Singularities in classical gravity
 - ▶ limitations in application of perturbative string theory
 - no consensus on the fate of singularities in dual QFT [Hertog, Horowitz '04, '05; Das, Michelson, Narayan, Trivedi '07; Barbón, Rabinovici '11; Craps, Hertog, Turok '12; Smolkin, Turok '12; Engelhardt, Horowitz '15, '16; ...]
- Progress in singularity resolution from non-perturbative QG

Question

QG resolution of bulk singularity \rightarrow signatures/improvements in dual QFT?

Prototype calculation: effective bulk quantum geometry in a cosmological setting

Plan of the Talk

- 1. Setup and strategy
- 2. Holographic signatures of cosmological singularities

$$\boxed{ \text{bulk singularity} } \quad \longleftrightarrow \quad \boxed{ \text{pole in 2-point correlator} }$$

- 3. Resolved singularities in quantum corrected effective geometries
 - Simplifications needed for analytic treatment
 - ► Otherwise numerics necessary

4. Conclusions and outlook

Setup

[Engelhardt, Horowitz '14; Engelhardt, Horowitz, Hertog '15]

Bulk Kasner-AdS:
$$ds_5^2 = \frac{1}{z^2} (dz^2 + ds_4^2(t))$$

$$\textbf{Boundary:} \quad ds_4^2(t) = -dt^2 + \sum_{i=1}^3 \ t^{2p_i} dx_i^2 \quad , \quad p_i \in \mathbb{R}$$

Kasner conditions:
$$\sum_{i} p_{i} = 1 = \sum_{i} p_{i}^{2}$$

 $p_{\it i} < 0$ geodesics bent towards the singularity

Equal-time 2-point correlator

Geodesic approximation [Balasubramanian, Ross '00]

$$\langle \mathcal{O}(x)\mathcal{O}(-x)\rangle = \exp\left(-\Delta L_{ren}\right)$$

 $\Delta \equiv$ conformal weight of massive scalar operator \mathcal{O} $L_{ren} \equiv$ renormalized length of bulk geodesic connecting x and -x

Renormalized Geodesic Length

fixed z metric

boundary metric

$$\frac{1}{z^2}\Big(-dt^2+a^2(t)\,dx^2+\ldots\Big)$$

$$dt^2 + a^2(t) dx^2 + \dots$$

Two-point correlator:

$$\langle \mathcal{O} \mathcal{O} \rangle_{CFT} = \mathbf{z}^{-2\Delta} \langle \phi \phi \rangle_{bulk}$$

• Geodesic approximation:

$$\langle \phi \phi \rangle_{bulk} = \exp(-\Delta L)$$
 , $L \stackrel{\epsilon \to 0}{=} 2 \log(2z(t_*)) - 2 \log \epsilon$

$$\left\langle \mathcal{O}(-x)\mathcal{O}(x)
ight
angle_{\mathit{CFT}} = \exp\left(-\Delta\,L_{\mathit{ren}}
ight) = \left(2z(t_*)
ight)^{-2\Delta}$$

Holographic Signature of Cosmological Singularity

[Engelhardt, Horowitz '14; Engelhardt, Horowitz, Hertog '15]

Finite distance pole in two-point correlator

Quantum Corrected Kasner-AdS

Classical metric

$$ds_5^2 = \frac{1}{z^2} (dz^2 + ds_4^2(t))$$
 , $ds_4^2(t) = -dt^2 + \sum_{i=1}^3 t^{2p_i} dx_i^2$

- no large curvatures associated with z-direction
- curvature singularity in t-direction

Quantum corrected metric

$$ds_5^2 = \frac{1}{z^2} (dz^2 + ds_4^2(t, z))$$
 , $ds_4^2(t, z) = -dt^2 + a(t, z)^2 dx^2 + \dots$

- z-direction classical
- effective QG for 4d part s.t. singularity resolved

Quantum Corrected Kasner-AdS

In principle effective metric from full 5d quantum Einstein eqs. $\,\,
ightarrow\,$ here ansatz

- singularity resolution in $ds_4^2 \longrightarrow \text{singularity-free } ds_5^2$ (possible z-dependence of ds_4^2 must be small!)
- solution of 5d Einstein eqs. up to quantum corrections
- bulk QG effects relevant at 5d-Planck scale
- classical Kasner boundary metric
- quantum bounce with Kasner transitions
 [Gupt, Singh '12; Ashtekar, Wilson-Ewing '08; Wilson-Ewing '17]

Quantum Corrected Metric: A First Example

Quantum corrected metric [Bodendorfer, Schäfer, Schliemann '16]

$$ds_5^2 = \frac{1}{z^2} \left(dz^2 + ds_4^2(t) \right) \quad , \quad a(t) = \frac{a_{\text{ext}}}{\lambda^p} \left(t^2 + \lambda^2 \right)^{p/2}$$

Two main simplifications:

- 1. λ related to 4d bulk Planck scale
- 2. No Kasner transitions

Renormalized length and two-point correlator

Geodesic eqs. analytically solvable:

$$\pm s(z=\epsilon) \stackrel{\epsilon \to 0}{=} \log{(2z(t_*))} - \log{(\epsilon)}$$
 $\epsilon = \text{boundary regulator}$

and

$$L_{ren} = 2 \log (2z(t_*))$$
 \Rightarrow $\langle \mathcal{O}(x)\mathcal{O}(-x)\rangle = (2z(t_*))^{-2\Delta}$

Holographic Signature of Resolved Cosmological Singularity

[Bodendorfer, Schäfer, Schliemann '16]

No finite distance pole in two-point correlator!

Drop Simplification 1: 5d Planck Scale

Quantum corrected metric [Bodendorfer, Mele, Münch '18]

$$ds_5^2 = \frac{1}{z^2} \left(dz^2 - dt^2 + \sum_i \frac{a_i^2(t,z)}{a_i^2(t,z)} dx_i^2 \right) \quad , \quad a_i^2(t,z) = \frac{a_{ext}^2}{\lambda^2 p_i} \left(t^2 + \frac{z^2}{\lambda^2} \lambda^2 \right)^{p_i}$$

• ds_5^2 not singular at t=0

$$R_{\rm Kretschmann}^{(5)} = z^4 R_{\rm Kretschmann}^{(4)} + \dots \quad , \quad R_{\rm Kretschmann}^{(4)} \sim \lambda^{-4}$$

- \Rightarrow effective 5d scale: $\lambda \to z\lambda$ s.t. $R_{\text{Kretschmann}}^{(5)} = \mathcal{O}(\lambda_{5d}^{-4})$
- z-dependence of ds_4^2 small (order of λ) and $\partial_z a \to 0$ in zeroth order in λ
- classical Kasner-AdS boundary metric recovered $(\frac{a_{\rm ext}}{\lambda p} o 1$, $\lambda, z o 0)$
- symmetries:
 - ► translation (e.g., for us in x-direction)
 - ▶ scaling: $t \longmapsto \Lambda t$, $z \longmapsto \Lambda z$, $x \longmapsto \Lambda^{1-p} x$ $(\Lambda \in \mathbb{R})$
- no Kasner transitions

Boundary Pole Resolution

Boundary metric is singular

$$a_i^2(t,z) = rac{a_{\mathrm{ext}}^2}{\lambda^{2p_i}} \left(t^2 + \lambda^2 z^2\right)^{p_i} \stackrel{z o 0}{\longrightarrow} rac{a_{\mathrm{ext}}^2}{\lambda^{2p_i}} t^{2p_i}$$

Classical Kasner-AdS: [Engelhardt, Horowitz, Hertog '15]

$$z_* \rightarrow 0$$
 as $t_* \rightarrow 0$

family of space-like geodesics approaches a light-like boundary geodesic probing high-curvature regime

Quantum corrected bulk: **boundary geodesics isolated** (more later).

Solving Geodesic Equations

geodesic Eqs. not decoupled \longrightarrow numerics necessary!

- ullet initial values at the turning point only in terms of t_* and z_*
- ullet solve IVP numerically and find $t_0(t_*,z_*)/I(t_*,z_*)$
- we are interested in fixed t_0 -values and vary $l o find relation <math>z_*(l)$

Solving Geodesic Equations

Key point: relate turning point data (t_*, z_*) with boundary data (t_0, I)

Note

- Classical case: bulk geodesics approaching a null boundary geodesic $(z_* \to 0 \text{ for } t_* \to 0)$
- Quantum case: z_* grows as $t_* \to 0 \Rightarrow$ null boundary geodesic not limit of bulk geodesics

Solving Geodesic Equations

Reading off the values of l along t_0 -level line, we get the relation $z_*(l)$:

$$ho = -1/4$$
 , $a_{\rm ext}/\lambda^p = 1$ $\lambda = 0$ $\lambda = 0.06$

last step: check
$$L_{ren} \sim \log \left(z(t_*) \right) \Rightarrow \langle \mathcal{O}(-x) \mathcal{O}(x) \rangle \propto \left(z(t_*) \right)^{-2\Delta}$$

Renormalized Geodesic Length & Two-point Correlator

Renormalization of geodesic length

- ullet Conformal boundary (z=0) lies at infinity o geodesic length diverges
- Renormalization procedure needed:
 - 1. Evaluate geodesic up to $\epsilon = z_{UV}/t << 1$
 - 2. Subtract divergent contribution ($\epsilon \to 0$)

$$L_{ren} = L - L_0$$
 , $L_0 = 2 \log \left(\left| \frac{z_{UV}}{t} \right| \right)$

$$\langle \mathcal{O}(-I)\mathcal{O}(I)
angle \propto e^{-\Delta L_{ren}} = (z_*)^{-2\Delta} + z_*
eq 0$$
 for finite non-zero I

pole resolved

Drop Simplification 2: Inclusion of Kasner Transitions

Inclusion of Kasner transitions highly non trivial:

- Find a metric satisfying all requirements discussed before not straightforward
- We provided two examples of quantum corrected metrics partially satisfying them

 \downarrow

pole resolution qualitatively the same!

Conclusion

Summary

- \bullet Bulk singularity resolution $\stackrel{\textit{dual}}{\longleftrightarrow}$ boundary finite-distance pole resolution
- Application of LQG in Gauge/Gravity-framework possible
- New tools for holography/improvements in dual field theory

Conclusion

Summary

- Bulk singularity resolution $\stackrel{\textit{dual}}{\longleftrightarrow}$ boundary finite-distance pole resolution
- · Application of LQG in Gauge/Gravity-framework possible
- New tools for holography/improvements in dual field theory

Future work

- 5d-Loop quantization
- Look for independent field theory calculations, e.g. via lattice QFT
- Generalize to other spacetimes, e.g. black holes (work in progress)
- Long term goal: finite N gauge theory

Conclusion

Summary

- Bulk singularity resolution $\stackrel{\textit{dual}}{\longleftrightarrow}$ boundary finite-distance pole resolution
- · Application of LQG in Gauge/Gravity-framework possible
- New tools for holography/improvements in dual field theory

Future work

- 5d-Loop quantization
- Look for independent field theory calculations, e.g. via lattice QFT
- Generalize to other spacetimes, e.g. black holes (work in progress)
- Long term goal: finite N gauge theory

Thank you for your attention!

Inclusion of Kasner Transitions

Quantum corrected metric

$$ds_5^2 = \frac{1}{z^2} \left(dz^2 - dt^2 + a(t, z)^2 dx^2 + \dots \right)$$

with

$$\mathit{a}(t,z)^2 = \frac{\mathit{a}_{\mathrm{ext}}^2}{\lambda^{2p}} \left(t^2 + \lambda^2 z^2 \right)^p \exp \left[2 \Delta p \sinh^{-1} \left(\frac{t}{z \lambda} \right) \right] \ , \quad \Delta p \in \mathbb{R}$$

- ds_4^2 : $a(t,z) = \frac{a_{ext}}{\lambda^p} \left(t^2 + \lambda^2\right)^{p/2} \exp\left[2\Delta p \sinh^{-1}\left(\frac{t}{\lambda}\right)\right]$
 - limiting curvature mimetic gravity [Chamseddine, Mukhanov '16]
 - toy model effective homog. and isotr. LQG [Bodendorfer, Schäfer, Schliemann '17]
- $\lambda \to z\lambda$ (quantum effects at 5d Planck scale)
- implement transition $p_-=p-\Delta p \
 ightarrow \ p_+=p+\Delta p$
- $\Delta p = 0 \, o \, 5 d$ Planck scale quantum corrected metric with no transitions

Inclusion of Kasner Transitions

For $\left|\frac{t}{\tau\lambda}\right| >> 1$:

$$a(t,z)^2 \simeq rac{a_{ext}^2}{\lambda^{2p}} igg(rac{2}{\lambda z}igg)^{\pm 2\Delta p} t^{2p\pm} \quad , \quad p_\pm = p \pm \Delta p$$

 \Rightarrow transition $p_- \to p_+$ at the bounce (t=0).

boundary 4d classical Kasner	X
solution of 5d Einstein eqs. up to $\mathcal{O}(\lambda)$	×
Kretschmann condition $R_{Kretsch.}^{(5)} = \mathcal{O}(\lambda_{5d}^{-4})$	✓
Qualitative LQC behavior	✓
symmetries (translation, scaling)	✓

Alternative Metric for Kasner Transitions

$$a(t,z)^{2} = \frac{a_{\text{ext}}^{2}}{\lambda^{2p}} \left(t^{2} + \lambda^{2} z^{2} \right)^{p} \exp \left[2\Delta p \sinh^{-1} \left(\frac{t}{z\lambda} \right) \right] \cdot \underbrace{\frac{2}{8}}_{\text{ex}} 1.5$$
$$\cdot (\lambda z)^{2\Delta p \tanh \left(\frac{t}{z\lambda} \right)}$$

boundary 4d classical Kasner	✓
solution of 5d Einstein eqs. up to $\mathcal{O}(\lambda)$	✓
qualitative LQC behavior	×
Kretschmann condition $R_{Kretsch.}^{(5)} = \mathcal{O}(\lambda_{5d}^{-4})$	×

Numerical Results with Kasner Transitions

Two kinds of solutions:

- starting at $t_0 < 0$, bent towards the resolved singularity and passing it
- starting at $t_0 > 0$, bent away from the resolved singularity

Finite-distance pole in two-point correlator resolved!

Numerical Checks

cut-off dependence?

No Kasner Transitions

Z _{UV}	$\exp\left(-L_{ren}\right)$	$\exp\left(-L_{ren}\right)$
0.05	0.761810	0.917559
0.06	0.761841	0.917597
0.07	0.761860	0.917661
0.08	0.761896	0.917716
0.09	0.761943	0.917783
0.1	0.761972	0.917897

$$\lambda = 0.06, p = -\frac{1}{4}$$

Kasner Transitions

$\exp\left(-L_{ren}\right)$	$\exp\left(-L_{ren}\right)$
0.367113	0.308506
0.367149	0.308554
0.367185	0.308602
0.367229	0.308661
0.367267	0.308714
0.367314	0.308774
	0.367113 0.367149 0.367185 0.367229 0.367267

$$\lambda = 0.06 \; , \; p = -\frac{1}{16} \; , \; \Delta p = \frac{3}{16}$$

Renormalization procedure independent of z_{UV} within 0.1%

Comparison with Analytical Results: No z-dependence in ds₄²

