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Introduction: QG and Holography

Holographic aspects of QG actively investigated.

Main research directions (in LQG)

1. Dual statistical models from 3+0 QG partition function
[Costantino ’11; Dittrich, Hnybida ’13; Bonzom, Costantino, Livine ’15; Dittrich, Goeller,

Livine, Riello ’17]

2. Spin networks, tensor networks and holographic entanglement entropy
[Han, Hung ’16; Han, Huang ’17; Chirco, Oriti, Zhang ’17]

3. Holography in symmetry-reduced models
[Ashtekar, Wilson-Ewing ’08; Bodendorfer, Schäfer, Schliemann ’16; Bodendorfer, Mele,

Münch ’18]

Related work: [Freidel ’08; Bodendorfer, Thiemann, Thurn ’11; Bodendorfer ’15; Freidel, Perez,
Pranzetti ’16; Smolin ’16; Livine ’17, . . . ]

In this talk we will focus on the third direction. 1



Gauge/Gravity Duality in a Nutshell
[Maldacena ’97; Gubser, Klebanov, Polyakov ’98; Witten ’98]

Maldacena’s
original proposal:

conjectured exact equivalence

well tested low energy equivalence

Type IIB
String Theory

on

AdS5 ⇥ S5

week string coupling gS

small string length lS

large number of colours N

large ’t Hooft coupling �

N = 4 Super

Yang-Mills Theory

in 4d

Type IIB
Supergravity

asympt. AdS5 ⇥ S5

gS ! 0 , lS ! 0

Planar 4d, N = 4
Super Yang-Mills

Strongly coupled

N ! 1 , � ! 1

Holographic Principle [’t Hooft ’93; Susskind ’95; Bousso ’02; ...]

Duality between gauge and (quantum) gravity theories

I Tools for QFT (e.g, condensed matter, QCD)
I Quantum gravity models
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QG for AdS/CFT

• Gauge/Gravity mainly understood in the classical (super)gravity regime

• Singularities in classical gravity

I limitations in application of perturbative string theory

I no consensus on the fate of singularities in dual QFT

[Hertog, Horowitz ’04, ’05; Das, Michelson, Narayan, Trivedi ’07; Barbón, Rabinovici ’11;
Craps, Hertog, Turok ’12; Smolkin, Turok ’12; Engelhardt, Horowitz ’15, ’16; . . . ]

• Progress in singularity resolution from non-perturbative QG

Question

QG resolution of bulk singularity → signatures/improvements in dual QFT?

Prototype calculation: effective bulk quantum geometry in a cosmological setting
3



Plan of the Talk

1. Setup and strategy

2. Holographic signatures of cosmological singularities

bulk singularity ←→ pole in 2-point correlator

3. Resolved singularities in quantum corrected effective geometries

I Simplifications needed for analytic treatment

I Otherwise numerics necessary

singularity resolution ←→ pole resolution

4. Conclusions and outlook
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Setup
[Engelhardt, Horowitz ’14; Engelhardt, Horowitz, Hertog ’15]

z(t⇤)

t0

t⇤

t = 0

2x(t0)

z

t

Bulk Kasner-AdS: ds2
5 =

1
z2

(
dz2 + ds2

4 (t)
)

Boundary: ds2
4 (t) = −dt2 +

3∑
i=1

t2pi dx2
i , pi ∈ R

Kasner conditions:
∑
i

pi = 1 =
∑
i

p2
i

pi < 0 geodesics bent towards the singularity

Equal-time 2-point correlator

Geodesic approximation [Balasubramanian, Ross ’00]

〈O(x)O(−x)〉 = exp (−∆Lren)

∆ ≡ conformal weight of massive scalar operator O
Lren ≡ renormalized length of bulk geodesic connecting x and -x
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Renormalized Geodesic Length

fixed z metric

1
z2

(
−dt2 + a2(t) dx2 + . . .

) −−−− →
boundary metric

dt2 + a2(t) dx2 + . . .

• Two-point correlator:

〈OO〉CFT = z−2∆ 〈φφ〉bulk

• Geodesic approximation:

〈φφ〉bulk = exp
(
−∆ L

)
, L

ε→0
= 2 log

(
2z(t∗)

)
− 2 log ε

〈O(−x)O(x)〉CFT = exp
(
−∆ Lren

)
=
(
2z(t∗)

)−2∆
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Holographic Signature of Cosmological Singularity
[Engelhardt, Horowitz ’14; Engelhardt, Horowitz, Hertog ’15]

Holographic signature of cosm. singularity
[Engelhardt, Horowitz ’14; Engelhardt, Horowitz, Hertog ’15]

finite distance pole!< O(x)O(�x) >= (2z(t�))
�2�

9
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z(t�)

t0

t�

t = 0

2x(t0)

t� = t0

t� = 0

�O(x)O(�x)� = (z(t�))
�2�

⌥⌃ ⌅⇧Finite distance pole in two-point correlator!
10

/

Finite distance pole in two-point correlator
7



Quantum Corrected Kasner-AdS

Classical metric

ds2
5 =

1
z2

(
dz2 + ds2

4 (t)
)

, ds2
4 (t) = −dt2 +

3∑
i=1

t2pi dx2
i

• no large curvatures associated with z-direction

• curvature singularity in t-direction

↓
Quantum corrected metric

ds2
5 =

1
z2

(
dz2 + ds2

4 (t, z)
)

, ds2
4 (t, z) = −dt2 + a(t, z)2dx2 + . . .

• z-direction classical

• effective QG for 4d part s.t. singularity resolved
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Quantum Corrected Kasner-AdS

In principle effective metric from full 5d quantum Einstein eqs. → here ansatz

• singularity resolution in ds2
4 −→ singularity-free ds2

5

(possible z-dependence of ds24 must be small!)

• solution of 5d Einstein eqs. up to quantum corrections

• bulk QG effects relevant at 5d-Planck scale

• classical Kasner boundary metric

• quantum bounce with Kasner transitions
[Gupt, Singh ’12; Ashtekar, Wilson-Ewing ’08; Wilson-Ewing ’17]
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Quantum Corrected Metric: A First Example

Quantum corrected metric [Bodendorfer, Schäfer, Schliemann ’16]

ds2
5 =

1
z2

(
dz2 + ds2

4 (t)
)

, a(t) =
aext
λp

(
t2 + λ2)p/2

Two main simplifications:

1. λ related to 4d bulk Planck scale

2. No Kasner transitions

Renormalized length and two-point correlator

Geodesic eqs. analytically solvable:

±s(z = ε)
ε→0
= log (2z(t∗))− log (ε) ε = boundary regulator

and

Lren = 2 log (2z(t∗)) ⇒ 〈O(x)O(−x)〉 =
(
2z(t∗)

)−2∆
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Holographic Signature of Resolved Cosmological Singularity
[Bodendorfer, Schäfer, Schliemann ’16]

Holographic signature of resolved
cosmological singularity [NB, Schäfer, Schliemann ’16]

Finite distance pole resolved!
15

λ = �

λ = �

← �* ≈ ���

��� ��� ��� ���
�(��)

��

���

���

�(�*)

< O(x)O(�x) >= (2z(t�))
�2�

z(t�)

t0

t�

t = 0

2x(t0) �O(x)O(�x)� = (z(t�))
�2�

t� = t0

t� = 0

⌥⌃ ⌅⇧No finite distance pole in two-point correlator!
15

/

No finite distance pole in two-point correlator!
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Drop Simplification 1: 5d Planck Scale

Quantum corrected metric [Bodendorfer, Mele, Münch ’18]

ds2
5 =

1
z2

(
dz2−dt2+

∑
i

a2
i (t, z)dx2

i

)
, a2

i (t, z) =
a2
ext

λ2pi

(
t2 + z2λ2)pi

• ds2
5 not singular at t = 0

R
(5)
Kretschmann = z4R

(4)
Kretschmann + . . . , R

(4)
Kretschmann ∼ λ

−4

⇒ effective 5d scale: λ→ zλ s.t. R
(5)
Kretschmann = O(λ−4

5d )

• z-dependence of ds2
4 small (order of λ) and ∂za→ 0 in zeroth order in λ

• classical Kasner-AdS boundary metric recovered ( aext
λp → 1 , λ, z → 0)

• symmetries:
I translation (e.g., for us in x-direction)
I scaling: t 7−→ Λt , z 7−→ Λz , x 7−→ Λ1−px (Λ ∈ R)

• no Kasner transitions 12



Boundary Pole Resolution

Boundary metric is singular

a2
i (t, z) =

a2
ext

λ2pi

(
t2 + λ2z2)pi z→0−→ a2

ext

λ2pi
t2pi

Classical Kasner-AdS: [Engelhardt, Horowitz, Hertog ’15]

z∗ → 0 as t∗ → 0

family of space-like geodesics approaches a light-like
boundary geodesic probing high-curvature regime z(t⇤)

t0

t⇤

t = 0

2x(t0)

z

t

z
=

0
Quantum corrected bulk: boundary geodesics isolated (more later).
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Solving Geodesic Equations

geodesic Eqs. not decoupled −→ numerics necessary!

Strategy

boundary-value problem

↓

initiual-value problem

(t = t0, x = �l, z = 0)
(t = t0, x = l, z = 0)

(ṫ = 0, ẋ = z⇤/a(t⇤, z⇤), ż = 0)

(t = t⇤, x = 0, z = z⇤)

• initial values at the turning point only in terms of t∗ and z∗

• solve IVP numerically and find t0(t∗, z∗)/l(t∗, z∗)

• we are interested in fixed t0-values and vary l → find relation z∗(l)

14



Solving Geodesic Equations

Key point: relate turning point data (t∗, z∗) with boundary data (t0, l)

t
0

0 1 2 3 4 5

t
*
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(b)

Figure 3: Colour plot of (a) t0(t⇤, z⇤) and (b) l(t⇤, z⇤) for p = �1/4, � = 0.06, aext = �p. The red curve

corresponds to the t0 = 4 level line. This contour is also plotted in (b). The black dashed line corresponds to

t2 = �2z2 and separates quantum and classical regime.

which, as can be checked by calculating the Kretschmann scalar, features an onset of quantum

gravity e↵ects at the 5d Planck scale (cfr. Sec. 2.3) but neglects Kasner transitions. For t � z�,

where quantum corrections are negligible in (4.1), the classical Kasner-AdS solution of the 5d-

Einstein equations is recovered. The z-derivative of a(t, z) is O(�) with finite coe�cients and

can thus be accounted for by quantum corrections in the z-direction, which we systematically

neglect here. Also, the proper classical boundary limit exists. These points will be relevant and

highly non-trivial also in Sec. 4.2 where Kasner transitions are included.

For this metric the derivatives of a(t, z)2 entering Eqs. (3.7) are given by

@(a2)

@t
= 2p

a2
ext

�2p
t
�
t2 + �2z2

�p�1
= 2a(t, z)2

pt

t2 + �2z2
, (4.2)

@(a2)

@z
= 2p

a2
ext

�2p
�2z

�
t2 + �2z2

�p�1
= 2a(t, z)2

p�2z

t2 + �2z2
. (4.3)

The solutions of t0(t⇤, z⇤) and l(t⇤, z⇤) describe surfaces in a 3d space spanned by (t⇤, z⇤, t0) and

(t⇤, z⇤, l), respectively. To visualise them we report z⇤ vs. t⇤ in Fig. 3 where the third direction

(respectively t0 and l) is replaced by a colour scale. For this calculation we fixed the parameters

to p = �1/4 and � = 0.06. The range of t⇤ and z⇤ is chosen to be between [0, 10]. Let us focus

on Fig. 3 (a) first. Among the level lines corresponding to di↵erent values of t0, we selected for

instance the one for t0 = 4 (red curve). This level line relates z⇤ and t⇤ for that given constant

value of t0. We can compare this now with the classical case (see Fig. 4). The classical region

is in the area where t2 � �2z2, but since � = 0.06 is chosen very small the “dividing line”

t2 = �2z2 is close to the z⇤-axis (see black dashed line in Fig. 3 (a)). Indeed for large t⇤ (here

& 1) and small z⇤ (here < 10) we see exactly the classical behaviour (cfr. Fig. 4). On the other

hand, going to the quantum regime (t2 ⌧ �2z2), i.e. close to the z⇤-axis, we see that the level

lines exhibit turning points. Therefore, unlike the classical case where the finite-distance pole

in the two-point correlator was due to bulk geodesics approaching a null geodesic lying entirely

on the boundary (z⇤ ! 0 for t⇤ ! 0 on a constant t0 level line), quantum corrections of the

12

t2 = �2z2

t0 = 4 t0 = 4

p = �1/4 , � = 0.06 , aext = �p

Note

• Classical case: bulk geodesics approaching a null boundary geodesic
(z∗ → 0 for t∗ → 0)

• Quantum case: z∗ grows as t∗ → 0 ⇒ null boundary geodesic not
limit of bulk geodesics
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Solving Geodesic Equations

Reading off the values of l along t0-level line, we get the relation z∗(l):

0 2 4 6 8 10 12

l

0

2

4

6

8

10

z
*

λ=0

λ=0.06

p = −1/4 , aext/λ
p = 1

——– λ = 0

——– λ = 0.06

last step: check Lren ∼ log (z(t∗)) ⇒ 〈O(−x)O(x)〉 ∝
(
z(t∗)

)−2∆
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Renormalized Geodesic Length & Two-point Correlator

Renormalization of geodesic length

• Conformal boundary (z = 0) lies at infinity → geodesic length diverges

• Renormalization procedure needed:

1. Evaluate geodesic up to ε = zUV /t << 1

2. Subtract divergent contribution (ε→ 0)

Lren = L− L0 , L0 = 2 log
(∣∣∣ zUV

t

∣∣∣)
Two-point correlator
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Figure 6: Plot of Lren on y-axis vs. z⇤ on a logarithmic x-axis for the metric (4.1) (blue) with t0 = 4, � = 0.06,

p = �1/4, aext = �p. The almost linear behaviour indicates a log-dependence of Lren from z⇤ like Eq. (3.15) (red

dashed).

this leads to a pole in the two-point correlator of the boundary theory. Concerning the quantum

case (blue line), we see a turning point in z⇤(l) at finite l, and then z⇤ increases again as it was

already visible in Fig. 3. Therefore, z⇤ never hits 0 for finite non-zero values of l. Moreover, as

in the analytical case (Fig. 2), there are multiple solutions corresponding to the same boundary

separation, whose contribution has to be added in the two-point correlator. Note that because

of the cuto↵ in z⇤ both the classical and quantum curves do not start at z⇤ = l = 0.

The next step is to calculate Lren by means of the procedure described in Sec. 3.3. A

possible dependence like Eq. (3.15) can be easily visualised in a log-plot, where a straight line

is expected (red dashed line in Fig. 6). As shown in Fig. 6, our numerical solutions (blue line)

exhibit such a dependence. Nevertheless, there are some subtleties to be discussed. First of all,

the upper region provides a purely quantum contribution to the long distance behaviour of the

two-point correlator. As can be checked, in agreement with the results of [21], this contribution

decays faster than the lower region (short distance) contribution. Moreover, there are turning

points in the line which reflects the above mentioned existence of multiple solutions for a given

boundary separation. Indeed, the renormalised length Lren is calculated for each point along

the same t0 = 4 level line selected before in Fig. 3. The turning points are also present in

Fig. 6, where some values of z⇤ are passed more than once. Nevertheless, the shape of a

straight line is kept. In the lower region, which contributes to the short distance behaviour of

the two-point correlator, deviations from this log-dependence occur below our chosen range of

evaluation, but these are just numerical artifacts. Indeed, in this region, z⇤ comes close to zUV ,

the approximation zUV
t ⌧ z⇤

t⇤
fails, and the error increases. However, our main interest concerns

the behaviour Lren / log(z⇤), or in other words, that Lren(z⇤) is well-behaved in the sense that it

does not diverge at finite values of z⇤. Together with the above results, we can finally conclude

that the resolution of the singularity in the bulk also resolves the singularity of the two-point

correlator of the boundary theory when the onset of quantum gravity e↵ects happens at the 5d

bulk Planck scale.

14

〈O(−l)O(l)〉 ∝ e−∆Lren = (z∗)
−2∆

+

z∗ 6= 0 for finite non-zero l

⇓
pole resolved
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Drop Simplification 2: Inclusion of Kasner Transitions

Inclusion of Kasner transitions highly non trivial:

• Find a metric satisfying all requirements discussed before not
straightforward

• We provided two examples of quantum corrected metrics partially
satisfying them

↓
pole resolution qualitatively the same!
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Conclusion

Summary

• Bulk singularity resolution dual←→ boundary finite-distance pole resolution

• Application of LQG in Gauge/Gravity-framework possible

• New tools for holography/improvements in dual field theory

Future work

• 5d-Loop quantization

• Look for independent field theory calculations, e.g. via lattice QFT

• Generalize to other spacetimes, e.g. black holes (work in progress)

• Long term goal: finite N gauge theory

Thank you for your attention!
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Inclusion of Kasner Transitions

Quantum corrected metric

ds2
5 =

1
z2

(
dz2 − dt2 + a(t, z)2dx2 + . . .

)
with

a(t, z)2 =
a2
ext

λ2p

(
t2 + λ2z2)p exp [2∆p sinh−1

( t

zλ

)]
, ∆p ∈ R

• ds2
4 : a(t, z) = aext

λp

(
t2 + λ2)p/2 exp [2∆p sinh−1 ( t

λ

)]
- limiting curvature mimetic gravity [Chamseddine, Mukhanov ’16]

- toy model effective homog. and isotr. LQG [Bodendorfer, Schäfer, Schliemann ’17]

• λ→ zλ (quantum effects at 5d Planck scale)

• implement transition p− = p −∆p → p+ = p + ∆p

• ∆p = 0 → 5d Planck scale quantum corrected metric with no transitions
21



Inclusion of Kasner Transitions

For
∣∣ t
zλ

∣∣ >> 1:

a(t, z)2 ' a2
ext

λ2p

(
2
λz

)±2∆p

t2p± , p± = p±∆p

⇒ transition p− → p+ at the bounce (t=0).

-0.5 0 0.5
t

0

0.5

1

1.5

2

2.5

3

a
(t

,z
)

λ=0.06, p
-
 = -1/4, p

+
=1/8

z=0.2
z=0.5
z=0.8
z=1
z=2
class
class

boundary 4d classical Kasner 8

solution of 5d Einstein eqs. up to O(λ) 8

Kretschmann condition R
(5)
Kretsch. = O(λ−4

5d ) 4

Qualitative LQC behavior 4

symmetries (translation, scaling) 4
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Alternative Metric for Kasner Transitions

a(t, z)2 =
a2
ext

λ2p

(
t2 + λ2z2)p exp [2∆p sinh−1

(
t

zλ

)]
·

· (λz)2∆p tanh ( t
zλ )

-0.3 -0.2 -0.1 0 0.1 0.2
t

0

0.5

1

1.5

2

2.5

3

a
(t

,z
)

λ=0.06, p
-
=-1/4, p

+
=1/8

z=0.2
z=0.5
z=0.8
z=1
z=2
class
class

boundary 4d classical Kasner 4

solution of 5d Einstein eqs. up to O(λ) 4

qualitative LQC behavior 8

Kretschmann condition R
(5)
Kretsch. = O(λ−4

5d ) 8
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Numerical Results with Kasner Transitions

Two kinds of solutions:

• starting at t0 < 0, bent towards the resolved singularity and passing it

• starting at t0 > 0, bent away from the resolved singularity
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Finite-distance pole in two-point correlator resolved!
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Numerical Checks

cut-off dependence ?

No Kasner Transitions

ZUV exp (−Lren) exp (−Lren)
0.05 0.761810 0.917559
0.06 0.761841 0.917597
0.07 0.761860 0.917661
0.08 0.761896 0.917716
0.09 0.761943 0.917783
0.1 0.761972 0.917897

λ = 0.06 , p = − 1
4

Kasner Transitions

ZUV exp (−Lren) exp (−Lren)
0.05 0.367113 0.308506
0.06 0.367149 0.308554
0.07 0.367185 0.308602
0.08 0.367229 0.308661
0.09 0.367267 0.308714
0.1 0.367314 0.308774

λ = 0.06 , p = − 1
16 , ∆p = 3

16

Renormalization procedure independent of zUV within 0.1%
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Comparison with Analytical Results: No z-dependence in ds24

Analytic Numeric
3.4.4 Intermediate distance behaviour

λ = �

λ = �

← �* ≈ ���

��� ��� ��� ���
�(��)

��

���

���

�(�*)

Figure 1: z(t⇤) is plotted against x(t0) for � = 1 (thick blue) and � = 0 (thin red), starting from
t⇤ = t0 = 100 at (0, 0). The solid blue line was obtained from numerical computations, while the
dashed blue line shows the asymptotic behaviour for t⇤ ! 0, which is hard to probe numerically
(the crossover to the blue dashed line is at t⇤ = 1.4 · 10�11t0), but has been computed analytically
in equation (3.20). In the classical limit (red curve), x(t0) approaches half the cosmological horizon
scale for t⇤ ! 0, in this case 80

p
10 ⇡ 253. We note that the same x(t0)-value corresponds to multiple

z(t⇤) values, which we have to add in the two-point correlator (in addition to complex solutions). We
also note that the resolved classical pole is still the dominant (smallest z(t⇤)) contribution around its
x(t0) value. This behaviour turned out to be generic for several other cases we have tested whenever
t0 � �. The blue line starts to deviate significantly from the red line around t⇤ ⇡ 0.4.

Figure 2: z(t⇤) is plotted against x(t0) for � = 1 (thick blue) and � = 0 (thin red), starting from
t⇤ = t0 = 4 at (0, 0). The characteristic intermediate scale behaviour shown in figure 1 disappears
starting around t0 . 5, i.e. when quantum corrections start to become relevant in the background
spacetime of the CFT. We note that the change of slope of the blue curve, here around x(t0) = 8.5,
still persists.

In order to investigate the intermediate distance behaviour of the two-point correlater, we plot
z(t⇤) vs. x(t0) for the case aext = 1, p = �1/4, for the two values � = 1 corresponding to the
quantum theory and � = 0 corresponding to the classical theory in figure 1 for and t0 = 100 and
figure 2 for t0 = 4. t⇤ = t0 corresponds to the point (0, 0), from which on t⇤ decreases until it reaches
0.
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Figure 12: Plot of z⇤ vs. l for the metric (2.5) with p = �1/4, � = 1, aext = 1 and (a) t0 = 4, (b) t0 = 100.

t
0

0 5 10

t
*

2

4

6

8

10

12

z
*

0

2

4

6

8

10

12

(a)

t
0

0 50 100 150

t
*

20

40

60

80

100

120

140

z
*

0

50

100

150

200

250

300

350

400

(b)

Figure 13: Colour plot of t0 with p = �1/4, � = 1, aext = 1 and (a) t0 = 4, (b) t0 = 100.

of di↵erent t0-level lines is visible in one plot. Indeed, for t0 ⇡ 5 the turning point becomes a

saddle point and finally vanishes for smaller t0. Furthermore, Fig. 14 shows the numerical and

analytical result of Lren for t0 = 4 and t0 = 100. In both cases the numerical and analytical

result coincide up to the uncertainties occurring at the boundaries of evaluation in z⇤ which we

already discussed in Sec. ??.
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3.4.4 Intermediate distance behaviour

Figure 1: z(t⇤) is plotted against x(t0) for � = 1 (thick blue) and � = 0 (thin red), starting from
t⇤ = t0 = 100 at (0, 0). The solid blue line was obtained from numerical computations, while the
dashed blue line shows the asymptotic behaviour for t⇤ ! 0, which is hard to probe numerically
(the crossover to the blue dashed line is at t⇤ = 1.4 · 10�11t0), but has been computed analytically
in equation (3.20). In the classical limit (red curve), x(t0) approaches half the cosmological horizon
scale for t⇤ ! 0, in this case 80

p
10 ⇡ 253. We note that the same x(t0)-value corresponds to multiple

z(t⇤) values, which we have to add in the two-point correlator (in addition to complex solutions). We
also note that the resolved classical pole is still the dominant (smallest z(t⇤)) contribution around its
x(t0) value. This behaviour turned out to be generic for several other cases we have tested whenever
t0 � �. The blue line starts to deviate significantly from the red line around t⇤ ⇡ 0.4.
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� � � � ��
�(��)

�
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Figure 2: z(t⇤) is plotted against x(t0) for � = 1 (thick blue) and � = 0 (thin red), starting from
t⇤ = t0 = 4 at (0, 0). The characteristic intermediate scale behaviour shown in figure 1 disappears
starting around t0 . 5, i.e. when quantum corrections start to become relevant in the background
spacetime of the CFT. We note that the change of slope of the blue curve, here around x(t0) = 8.5,
still persists.

In order to investigate the intermediate distance behaviour of the two-point correlater, we plot
z(t⇤) vs. x(t0) for the case aext = 1, p = �1/4, for the two values � = 1 corresponding to the
quantum theory and � = 0 corresponding to the classical theory in figure 1 for and t0 = 100 and
figure 2 for t0 = 4. t⇤ = t0 corresponds to the point (0, 0), from which on t⇤ decreases until it reaches
0.
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of di↵erent t0-level lines is visible in one plot. Indeed, for t0 ⇡ 5 the turning point becomes a

saddle point and finally vanishes for smaller t0. Furthermore, Fig. 14 shows the numerical and

analytical result of Lren for t0 = 4 and t0 = 100. In both cases the numerical and analytical

result coincide up to the uncertainties occurring at the boundaries of evaluation in z⇤ which we

already discussed in Sec. ??.
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