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Comparison with lattice results

Figure: Temperature dependence of the conductivity to temperature ratio e−2σ/T computed
on the lattice. The vertical boxes reflect systematic the whiskers statistical errors. [G. Aarts et.
al., 2014].
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Comparison with lattice results

Figure: The conductivity computed via holography in the λ→∞ limit (red line) compared
with results of hot QCD lattice calculations.
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Type IIb SUGRA action

For N →∞, λ→∞ the 10 dimensional effective action obtained from closed massless
strings is given by

SIIB = 1
κ10

∫
d10X

√
−g
(

e−2φ(R + 4∂µφ∂µφ−
|H3|2

2 )− |F1|2

2

− |F3|2

2 − |F5|2

4

)
− 1

4κ10

∫
C4 ∧ H3 ∧ F3

up to O(α′0). The solutions we are interested in imply H3 = F1 = F3 = 0, such that

S10 = 1
2κ10

∫
d10x
√
−g
[
R10 − ∂µφ∂µφ−

|F5|2

4× 5!

]
.
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Higher derivative corrections
Either

compute higher α′ corrections to string theory β functions
Or compute higher string corrections to graviton scattering amplitudes

and model the effective action accordingly.

Defining γ = ζ(3)
8 λ−

3
2 with λ ∝ 1√

α′
gives

S = S10 + γSγ10 +O(γ
4
3 ).

Sγ10 = 1
2κ10

∫
d10x
√
−g
[
C4 + C3T + C2T 2 + CT 3 + T 4

]
.

The terms C4, C3T , . . . , are schematical. They represent several tensor contractions
of the form

. . . ,CabcdCa
e

f
gCb

fhiT cdeghi ,Cabc
dCabc

eTdfghijT efhgij , . . . .
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Einstein-Maxwell-AdS/CFT in the λ→∞ limit

The type IIb SUGRA action:

S10 = 1
2κ10

∫
d10x
√
−g
[
R10 −

1
4× 5!F 2

5

]
.

To obtain Maxwell-terms FµνFµν twist the five sphere S5 in a maximally
symmetric manner. (Chemblin, Emparan, Johnson, 1999)
We treat this twist as a tiny perturbation of our background geometry.
Their propagator corresponds to the current-current correlation function in the
SYM on the boundary of the corresponding U(1) current.
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The perturbed metric
The Schwarzschild-AdS×S5-solution of the geometry

ds2
10 = ds2

AdS +
3∑

i=1

(
dµ2

i + µ2
i (dφi + 2√

3
Aµdxµ)2)

µ1 = sin(y1), µ2 = cos(y1) sin(y2), µ3 = cos(y1) cos(y2), φi = yi+2

ds2
AdS = −r2

h
1− u2

u dt2 + 1
4u2(1− u2)du2 + r2

h
u (dx2 + dy2 + dz2)

is perturbed by a vector field Aµ, whose EoM will be obtained from linearizing the
resulting Einstein equations.

The Ricci scalar becomes

R10 = RAµ→0
10 − 1

3FµνFµν .

The dilaton field’s EoM decouple such that we can focus on the F 2
5 -part of the

action.
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The EoM of the five form

The EoM of the 5-form F5
d ∗ F5 = 0,

is obtained by varying S10 with respect to C4, with dC4 = F5.
The full solution of the five form in order O(α′0) including gauge fields is

F5 = (1 + ∗)((F 0
5 )el + (F 1

5 )el )

(F 0
5 )el = −4ε5, (F 1

5 )el = 1√
3

3∑
i=1

d(µ2
i ) ∧ dφi ∧ ∗̄F2.

The EoM for Aµ can be obtained both by varying the action with respect to Aµ
and from the tuyzy1y3, tuyzy2y4, tuyzy2y5, tuyzy1y5 and tuyzy1y4-directions of
d ∗ dC4 = 0:

∂2
uAx −

2u
1− u2∂uAx + ω̂2 − q̂2(1− u2)

u(1− u2)2 Ax = 0.
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Higher derivative corrections to the geometry
From the variation of the action with finite coupling corrections

S = 1
2κ10

∫
d10x
√
−g
[
R10 −

1
4× 5!F 2

5

]
+ γ

∫
d10x
√
−gC4

with respect to the metric and the four form one obtains EoM whose solutions of the
form

ds2
10 = −r2

h U(u)dt2 + Ũ(u)du2 + r2
h e2V (u)(dx2 + dy2 + dz2)

+ L(u)2dΩ2
5.

F5 = −
(

1 + ∗
) 4

L(u)5 ε
γ
AdS5

Here U2, Ũ2, e2V , and L2 are the α′-corrected metric components, whose λ→∞ limit
gives the AdS-Schwartzschild metric.
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Twisted metric ansatz

As in the coupling correction free case we introduce gauge fields by twisting the
5-sphere.

ds2
10 =− r2

h U(u)dt2 + Ũ(u)du2 + r2
h e2V (u)(dx2 + dy2 + dz2)+

L(u)2
3∑

i=1

(
dµ2

i + µ2
i (dφi + 2√

3
Aµdxµ)2).

We consider transverse fields Aµ(u, z , t).
Without loss of generality we may assume that only the x -component is
non-vanishing.
Here U2, Ũ2, e2V , and L2 are the α′-corrected metric components, whose λ→∞
limit gives the AdS-Schartzschild metric.
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Higher derivative EoM
The EOMs, obtained by varying with respect to the 4-form components (dC4 = F5)
can be shown to be equivalent to

d
(
∗ F5 − ∗

2γ√
−g

δSγ10
δF5

)
= 0, which yields F5 = ∗

(
F5 −

2γ√
−g

δSγ10
δF5

)
.

where ∗ is the 10-dimensional Hodge star operator. The variation of the action with
respect to Aµ can be split in several parts

The Riemann-part is straightforward again, since

R10 =
(

R10
∣∣
Aµ→0

)
− L(u)2

3 FµνFµν .

as is the C4-part of the coupling correction terms.
The calculation of δγ

√
−gC2T 2

δAµ and δγ
√
−gC3T
δAµ . is simplified by the fact that

T |Aµ=0 = 0.
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Higher derivative EoM
Since the only components of the twisted metric, which are first order in Aµ, are
gxy3 , gxy4 , gxy5 , the only γ-corrected 5−form directions relevant in

δ
√
−gF 2

5
δAµ

are

(F5)tuxyz ,(F5)tuyzy3 , (F5)tuyzy4 , (F5)tuyzy5 , (F5)y1y2y3y4y5 ,

(F5)y1y2xy4y5 , (F5)y1y2y3xy5 , (F5)y1y2y3y4x .

This heavily restricts the directions of

d
(
∗ F5 − ∗

2γ√
−g

δSγ10
δF5

)
= 0,

that have to be considered.
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Higher derivative EoM

With the ansatz

(C4)xy2y4y5 = cos(y1)4 sin(2y2)Ax + γC(u, q, ω)√
3

.

for (C4)xy2y4y5 one can show that

− 1
4 · 5!

∂
√
−gF 2

5
∂Ax

= 16γC(u, q, ω)
3u2 + 4(F5)tuyzy3√

3 sin(y1)2 .
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Higher derivative EoM

The right hand side of the diagram has to be equal to
(
d
(
∗ 2γ√
−g

δSγ10
δF5

))
tuyzy1y3

.

(C4)xy2y4y5
d //

d

''
d

��
d

��

(F5)txy2y4y5
∗ // (∗F5)uyzy1y3

d // (d ∗ F5)tuyzy1y3

(F5)xzy2y4y5
∗ // (∗F5)tuyy1y3

d
66

(F5)uxy2y4y5
∗ // (∗F5)tyzy1y3

d

>>

(F5)xy1y2y4y5
∗ // (∗F5)tuyzy3

d

CC
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Higher derivative EoM

Applying

F5 = ∗
(

F5 −
2γ√
−g

δSγ10
δF5

)
gives

(F5)tuyzy3 =
√
−ggxxgy1y1gy2y2gy4y4gy5y5

(
4 sin(y1) cos(y1)3

sin(2y2)γC(u, q, ω)√
3

− 2γ√
−g

(Sγ10
δF5

)
xy1y2y4y5

)
,

which is the final piece in our puzzle.
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Higher derivative EoM

We end up with a coupled differential equation of fourth order for the function
C(u, q, ω), which encodes the α′-correction of the xy2y4y5, xy2y3y5,
xy2y3y4-direction of C4, and the gauge fields Aµ.
After considering that the relation between the temperature T and the horizon
radius rh get also γ-corrected, one obtains an indicial exponent of ± iω̂

2 , with
ω̂ = ω

2πT .
From the near boundary expansion of these equations and the requirement that
Aµ/(1− u)

−iω̂
2 should be a regular function, one obtains the missing boundary

condition C |u=0 = 0.
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∂2
u(A1

x )k + 2u
−1 + u2 ∂u(A1

x )k + (q̃2(−1 + u2) + ω̃2)
u(−1 + u2)2 (A1

x )k+

1
(48u2(−1 + u2)2) (u3(−9216q̃4u3(−1 + u2) + q̃2(−3900 + 73507u2−

145342u4 + 75735u6) + 15(520 − 1061u2 + 435u4)ω̃2)(A0
x )k − 2(−1

+ u2)(96C(u, q, ω) + u3(−1 + u2)(3900 − 23846u2 − 23040q̃2u3+
675u4)∂u(A0

x )k)) = 0.

∂2
u(A1

x )k + 2u
−1 + u2 ∂u(A1

x )k + q̃2(−1 + u2) + ω̃2

u(−1 + u2)2 (A1
x )k+

1
48u2(−1 + u2)2

(
u3(−9216q̃4u3(−1 + u2) + q̃2(−3900 + 116931u2−

260414u4 + 147383u6) + 3(2600 − 10969u2 + 7839u4)ω̃2)(A0
x )k + 2(24

(−2 + 2u2 + q̃2u(−1 + u2) + uω̃2)C(u, q, ω) − u2(−1 + u2)(u(−1 + u2)
(3900 − 36702u2 − 32480q̃2u3 + 20895u4)∂u(A0

x )k − 24(2u∂uC(u, q, ω)+
(−1 + u2)∂2

uC(u, q, ω))))
)

= 0.
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Minkowski prescription and correlators

Solving these EOMs allows us to compute for instance the electric conductivity. The
retarded Green’s function can be computed following the (Minkowski) prescription:

Π⊥ = −N2T 2

8 lim
u→0

(Ax )′k
(Ax )k

,

such that

i
∫

d4xe−iqxθ(x0)〈[Jµ(x), Jν(0)]〉 = C ret
µν = PT

µνΠ⊥ + PL
µνP‖,

with Pµν = ηµν − kµkν
k2 , PT

ij = δij − ki kj
k2 and zero elsewhere, PL

µν = Pµν − PT
µν .
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Finite coupling corrections to low energy limit

We can determine the higher derivative corrections to the low energy limit of the
spectral function, the photoemission rate and the conductivity at once:

χµµ = −4Im(Π⊥)− 2Im(Π||), Π<
µν = χµν

eωβ − 1 ,
dΓ

dQ4 = −
α(Π<)µµ
24π4Q2

χω=q
⊥ = −4Im(Π⊥) = N2T 2

2

(
(1 + 125γ)q̂ +O(q̂2)

)
,

σ = − lim
ω→0

e2

ω
Πxx (ω = q)

such that we can already read off the correction to the conductivity and the
photoemission rate for small frequencies (1 + 125γ). An anlogous computation in the
spin = 2-channel gives a correction of (1 + 135γ) to the transport coefficient there.
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The resummation technique is an approximation using the assumption that the
correction terms to the EoM of the gauge fields of higher order are small.
From the level of the first order EoM we proceed computing exactly in the ’t
Hooft coupling.
Applying this to the conductivity for λ = 11.3 ≈ 4πNαs |N=3,αs =0.3 we obtain a
resummed value of

σ = 0.29082e2T .

Without any coupling corrections the conductivity is given by

σ∞ = 9
16π e2T ≈ 0.179e2T .

This can be compared to results of hot QCD lattice calculations for T > 1.75Tc :
σ ≈ e2T (0.31± 0.05)
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Comparison with lattice results

Figure: The conductivity computed via holography in the λ→∞ limit (red line) and the
coupling corrected and resummed results for σ/e2T for λ ≈ 11.3 (black line) compared with
results of hot QCD lattice calculations. 24 / 35
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Both the low and the high frequency limit of the spectral functions/ photoemission
rate coincide with the qualitative expectations of weak-coupling calculations:

In the high energy limit we have

χω=q,q�1
⊥ = N2T 2

4
35/6Γ( 2

3 )
Γ( 1

3 )

(
(1−80.39γ)q̂2/3 + . . .

)
+O(γ2),

whereas in the low energy limit

χω=q
⊥ = N2T 2

2

(
(1+125γ)q̂ +O(q̂2)

)
+O(γ2).

25 / 35



Introduction Einstein-Maxwell-AdS/CFT in the λ→∞ limit Finite coupling corrections to gauge fields Results

α′3-corrections to the QNM-spectrum

Quasinormal modes (QNM) correspond to tiny perturbations of the system
QNM frequencies ω encode the frequency and the decay rate of the response of
the system to these perturbations
The inverse of their negative imaginary part is proportional to the thermalization
time τ
They can be found as the poles of the propagator Π⊥
or by formulation of the differential equations as a generalized eigenvalue problem
applying by spectral methods.
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α′3-corrections to the QNM-spectrum

q̂ = 0 γ = 0 O(γ1)-correction

1. QNM 1− i γ(646.132− 207.258i)

2. QNM 2− 2i γ(4896 + 495.5i)

q̂ = 1 γ = 0 O(γ1)-correction

1. QNM 1.54719− 0.84972i γ(298.289 + 208.678i)

2. QNM 2.39890− 1.87434i γ(2357 + 1916i)

1 1.5 2 2.5 3 3.5
−3

−2.5

−2

−1.5

−1

q̂ = 0

Re(ω̂)

I
m
(ω̂

)

2 2.5 3 3.5

−2.5

−2

−1.5

−1

q̂ = 1

Re(ω̂)

I
m
(ω̂

)

Figure: The first QNM frequencies at q = 2πT (right) and q = 0 (left) normalized by 2πT for
λ =∞ (blue) and their O(γ)-corrections for λ = 500 (red) and λ = 300 (brown).
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The resummed spectrum

1 1.5 2 2.5 3 3.5 4 4.5
−3

−2.5

−2

−1.5

−1

−0.5

λ = ∞

λ = 40

λ = 150

λ = 11.3

Re(ω̂)

Im
(ω̂

)

1 1.5 2 2.5 3 3.5 4 4.5
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−1.5

−1

−0.5

λ = ∞

λ = 40

λ = 150

λ = 11.3

Re(ω̂)

Im
(ω̂

)

Figure: The flow of the first 3 QNM frequencies, normalized by 2πT , with the ’t Hooft
coupling between λ =∞ and λ = 11.3 ≈ 4παsN, with N = 3 and αs = 0.3 computed in the
resummation scheme with q̂ = 0 (left) and q̂ = 1 (right). The slopes of the curves at γ = 0
give the first order corrections.

28 / 35



Introduction Einstein-Maxwell-AdS/CFT in the λ→∞ limit Finite coupling corrections to gauge fields Results

Off-equilibrium spectral density

The coupling corrected off-equilibrium spectral density is given by

χ(ω̂, us) = N2T 2

2 (1− 265
8 γ)Im

(
∂uA+
A+

)∣∣∣∣
u=0

,

with
Im
(A′+

A+

)∣∣∣∣
u=0

= Im
( cout

cin
∂uAout + ∂uAin

cout
cin

Aout + Ain

)∣∣∣∣
u=0

.

We compare the cases us = 1 and us = r2
h

r2
s

with rs > rh by calculating the quantity

R(ω̂, us) = χ(ω̂, us)− χ(ω̂, 1)
χ(ω̂, 1) .
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Off-equilibrium spectral density

q̂ = ŵ, us = 1/1.12

20 40 60 80

−0.6

−0.4

−0.2

0

0.2

ω/T

R

q̂ = ŵ, us = 1/1.012

10 20 30 40 50 60 70 80

−2

0

2

·10−2

ω/T

R

Figure: The function R⊥ plotted for rh = 1.1 on the left side and rh = 1.01 on the right side.
In both pictures the solid red line represents the λ =∞ limit, whereas the dashed blue line
shows the O(γ1) corrected results at λ = 300.
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A collection of coupling corrections

Quantity O(γ0) O(γ1)

s ( 1
2π

2N2
c T 3)−1 1 15 γ

η ( 1
8πN2

c T 3)−1 1 135 γ

4π η/s 1 120 γ

σ ( 1
4αEMN2 T )−1 1 125 γ

ωshear
2 (q = 0) (2πT )−1 2.585− 2.382 i (1.029 + 0.957 i) 104 γ

ωEM
2 (q = 0) (2πT )−1 2− 2 i (4.896 + 0.495 i) 103 γ

Table: A collection of results for the zeroth and first order terms in the expansion of various
thermal observables in powers of γ = 1

8 ζ(3)λ−3/2.
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Summary and Outlook

Coupling corrections to the photoemmission rate behave as predicted by weak
coupling perturbative calculations in the high and the low energy limit.
The corrections to the QNM-spectrum, the transport coefficients and spectral
functions are of the same order of magnitude as in the spin 2 channel.
If resummed, the corrections are under control even for λ values close to the
QCD-limit.
The resummed coupling corrected conductivity comes close to hot-QCD-lattice
results for realistic λ values.
Outlook: Compute higher derivative corrections to dynamical processes like
shockwave collisions/ isotropization etc.
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Backup Slides
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Backup Slides

The coupling correction part of the O(α′3)-action:

Sγ10 = 1
2κ10

∫
d10x
√
−g
[
C4 + C3T + C2T 2 + CT 3 + T 4

]
.

Cabcd = Rabcd −
1
8
(
gacRdb − gadRcb − gbcRda + gbdRca

)
+ 1

72×

×
(
Rgacgdb − Rgadgcb

)
,

Tabcdef = i∇aF +
bcdef + 1

16
(
F +

abcmnF +mn
def − 3F +

abfmnF +mn
dec

)
,

with two sets of antisymmetrized indices a, b, c and d , e, f . In addition the right hand
side is symmetrized with respect to the interchange of (a, b, c)↔ (d , e, f ) (Paulos,
2008).
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Backup Slides
As in the coupling correction free case we introduce gauge fields by twisting the
5-sphere.

ds2
10 =− r2

h U(u)dt2 + Ũ(u)du2 + r2
h e2V (u)(dx2 + dy2 + dz2)+

L(u)2 4Ax (u, t, z)2

3 dx2 + L(u)2 4Ax (u, t, z)√
3

dx
(
dy3 sin(y1)2+

dy4 cos(y1)2 sin(y2)2 + dy5 cos(y1)2 cos(y2)2)+ L(u)2(dy2
1 +

cos(y1)2dy2
2 + sin(y1)2dy2

3 + cos(y1)2 sin(y2)2dy4+
cos(y1)2 cos(y2)2dy2

5
)
.

We consider transverse fields Aµ(u, z , t). Without loss of generality we may assume
that only the x -component is non-vanishing. Here U2, Ũ2, e2V , and L2 are the
α′-corrected metric components, whose λ→∞ limit gives the AdS-Schartzschild
metric.
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