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Introduction

Comparison with lattice results
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Figure: Temperature dependence of the conductivity to temperature ratio e 20/ T computed
on the lattice. The vertical boxes reflect systematic the whiskers statistical errors. [G. Aarts et.
al., 2014].



Introduction

Comparison with lattice results
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Figure: The conductivity computed via holography in the A — oo limit (red line) compared
with results of hot QCD lattice calculations.



Type Ilb SUGRA action

For N — 0o, A — oo the 10 dimensional effective action obtained from closed massless
strings is given by

1 Hs|?,  |F?
SIIB: - /d1oX /jg( (R+4a ¢8#¢ ‘ 3| ) ’ ;|
10
|F3|? |F5|2> /
— — Cis ANHs A F
2 4 4r10 4N M3\ T3

up to O(a’®). The solutions we are interested in imply Hz = F; = F3 = 0, such that

|Fs|?
4 x 51|

Si0 = 5 [ 4xv/=E| Ruo ~ 9,006 -
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Introduction

Higher derivative corrections

Either
@ compute higher o’ corrections to string theory /3 functions
@ Or compute higher string corrections to graviton scattering amplitudes
and model the effective action accordingly.
Defining v = B \=3 with A

g \/— glVeS

S=5p+ 7530 + O(’y%).

1
Sto=5— / dOx/ g [c“ LT+ CT2 4+ CT3 + T4,
10
The terms C*, C3T, ..., are schematical. They represent several tensor contractions

of the form

af b cdeghi d ~abc efhgij
~-7Cabch e gC fhiT gl,Cabc C e7:1fghij7- gU7---~



Einstein-Maxwell-AdS /CFT in the A — oo limit

Einstein-Maxwell-AdS/CFT in the A — oo limit

The type IIb SUGRA action:

1 1
Sio=—— [ d'° \/ — [R — ,_—2]
10 2f€10/ X 8|10 4 % 5l 5

@ To obtain Maxwell-terms F,, F*” twist the five sphere S5 in a maximally
symmetric manner. (Chemblin, Emparan, Johnson, 1999)

@ We treat this twist as a tiny perturbation of our background geometry.

@ Their propagator corresponds to the current-current correlation function in the
SYM on the boundary of the corresponding U(1) current.



Einstein-Maxwell-AdS /CFT in the A — oo limit

The perturbed metric

The Schwarzschild-AdS x Sg-solution of the geometry

3
2
dsfo = dsias + D (dpuf + i (dei + = Audx")?)
i=1 V3
p1 = sin(y1), p2 = cos(y1)sin(y2), u3z = cos(yl)cos(yz) bi = yito
1—u? 1
dsf\ds: ,rﬁ . dt? + 4u2(1— )d + (dx +dy + dz? )

is perturbed by a vector field A,, whose EoM will be obtained from linearizing the
resulting Einstein equations.
@ The Ricci scalar becomes

A,—0

1
Rio = Rig " = 3 FuF™.

@ The dilaton field's EoM decouple such that we can focus on the F52—part of the

action.
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Einstein-Maxwell-AdS /CFT in the A — oo limit

The EoM of the five form

@ The EoM of the 5-form Fs
d * F5 = 0,
is obtained by varying S19 with respect to (4, with dCy = Fs.
@ The full solution of the five form in order O(a/°) including gauge fields is

Fs = (1+ *)((Fg)e' (F))

(FY = —4es, (F3) Z d(p?) A doi AN FFy.

\[

@ The EoM for A, can be obtained both by varying the action with respect to A,
and from the tuyzyiys, tuyzysya, tuyzysys, tuyzyys and tuyzy; ys-directions of
dxdCqy =0:

2u @ — (1 - u2)A _0

2
Ax - 31 9 qu
% 1-— u2(9 + u(l — u?)?
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Finite coupling corrections to gauge fields

Higher derivative corrections to the geometry

From the variation of the action with finite coupling corrections

S— / dOx/—g {Rm ! F5} 4o / d0x/—gC*

2k10

with respect to the metric and the four form one obtains EoM whose solutions of the
form

ds?y = —r2U(u)dt? + U(u)du® + r2e?V)(dx? + dy? + dz?)
+ L(u)?dQ2.

4
Fs = —<1 + *>L(u)5€des

Here U2, U2, €2V, and L2 are the o/-corrected metric components, whose A — oo limit
gives the AdS-Schwartzschild metric.

12/35



Finite coupling corrections to gauge fields

Twisted metric ansatz

As in the coupling correction free case we introduce gauge fields by twisting the
5-sphere.

3
L(u)*> " (dpi + pi(dei +

A dx")?).
2. N )%)

@ We consider transverse fields A, (u, z, t).

@ Without loss of generality we may assume that only the x-component is
non-vanishing.

o Here U2, U2, €2V, and L2 are the o/-corrected metric components, whose A — oo
limit gives the AdS-Schartzschild metric.

13/35



Finite coupling corrections to gauge fields

Higher derivative EoM

The EOMs, obtained by varying with respect to the 4-form components (dCs = Fs)
can be shown to be equivalent to

2y 657, _ i 2y 657,
d| * Fs — 10> = 0, which yields F5 = (F —10)_
(* > >I<\/—g 0Fs whieh yieles Fs == e v/—g 6Fs
where * is the 10-dimensional Hodge star operator. The variation of the action with

respect to A, can be split in several parts
@ The Riemann-part is straightforward again, since

L(u)?
Rio = <R10|AH—>0) - (3)FWF‘“’.

as is the C*-part of the coupling correction terms.
— 272 — 3 .
o The calculation of 2 _-€<7- V(sffT and 9vV_g<T VMiCT. is simplified by the fact that

Tla,=o = 0.
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Finite coupling corrections to gauge fields

Higher derivative EoM

Since the only components of the twisted metric, which are first order in A, are
g3, g™, g5, the only ~y-corrected 5—form directions relevant in

e ixi
A,

are
(F5)tuxy2a(F5)tuyzy3u (FS)tuyzy47 (F5)tuyzy57 (FS)y1y2y3y4y57
(FS)y1yzxy4y5> (F5)y1y2y3><ysv (F5)y1y2y3y4x-
This heavily restricts the directions of

.,
d<*F5_*275510) -0

V—g dFs

that have to be considered.



Finite coupling corrections to gauge fields

Higher derivative EoM

With the ansatz

. Ax+ CU, , W
(C4)X)’2Y4}/5:Cos(y1)45'n(2y2) ry\/(g ! )

for (C4)xyayays One can show that

1 8\/ng52 o 16’}’C(U, qaw) 4 4(F5)thZY3

4.5 A, 3u2 V3sin(y1)?’
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Finite coupling corrections to gauge fields

Higher derivative EoM

. . . 2 i
The right hand side of the diagram has to be equal to (d( * \/%gé—;:))tuyzym.

d d
(C4)Xyzy4y5 - (FS)th2y4y5 —— (*F5)uy2y1y3 —(d * F5)tuy2y1y3

d
(FS)xzy2y4y5 — (*F5)tuy}’1)’3
d

F5)uxy2y4y5 $’ (*FS)tyZy1y3

(FS)Xy1y2y4ys —— (*FS)tuyzy3

35



Finite coupling corrections to gauge fields

Higher derivative EoM

Applying
2y 55170>

Fo=#( Fs — 2210
> *(5 vV—g oFs

gives
(F5)tuyzys = /—g&g" " g"?2g" " g7 (4 sin(y1) cos(y1)?

sin(2}/2)’YC($§q’w) B \/2—77g<§/1:(;> )7

which is the final piece in our puzzle.

Xy1y2yays

18/35



Finite coupling corrections to gauge fields

Higher derivative EoM

@ We end up with a coupled differential equation of fourth order for the function
C(u, g,w), which encodes the o’-correction of the xy2yays, xy2y3ys,
xy2y3ys-direction of C4, and the gauge fields A,,.

o After considering that the relation between the temperature T and the horizon

radius r, get also y-corrected, one obtains an indicial exponent of i% with
w

0= .
2T
@ From the near boundary expansion of these equations and the requirement that

A,/(1—u)72 should be a regular function, one obtains the missing boundary
condition C|,—9 = 0.

19/35



Finite coupling corrections to gauge fields

2
DA+ 3 0u(Ai +

+

(@ (=1 + ) +&%)
u(—1+ u?)?

(v*(—92163* u*(—1 + u®) + §°(—3900 + 73507u°—

(Ai)ﬁ-

1
(48u2(—1 + u2)?)
145342u* 4 75735u°) 4 15(520 — 1061u” + 435u*)0%)(Ad)k — 2(—1
+ 1?)(96C(u, q,w) 4 (=1 + u°)(3900 — 23846u° — 230405°u°+
675u")9,(A%)x)) = 0.

2u
-1 + Ll2
(v°(—92164" u*(—1 + u”) + §°(—3900 + 116931u°—

-1+ ) +&°

u(—1+ u?)? (Aet

Do(ANk + Au(AL)k +

1
4812(—1 + 12)?
260414u* + 147383u°) + 3(2600 — 10969u° + 7839u*)*) (A2)« + 2(24
(—2+ 2% + §u(—1+ v) 4 ud®)C(u, q,w) — (=1 + v*)(u(—1 + v)
(3900 — 36702u” — 324805°u” + 20895u*)d,(A2)x — 24(2ud, C(u, q,w)+
(—1+ u*)3;C(u, q,w))))) = 0.
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Results

Minkowski prescription and correlators

Solving these EOMs allows us to compute for instance the electric conductivity. The
retarded Green's function can be computed following the (Minkowski) prescription:
N2 T2

_ (A
M= I A

such that
i/ d*xe™ "0 (x0)([Ju(x), 4, (0)]) = cret = PLHL + ,Dﬁy,D||7

Kiki
5+ and zero elsewhere, Plﬁy =P, — PMT,,.

. kyky
with Py, = nu — 257, P,-JT = 0jj —

21/35



Results

Finite coupling corrections to low energy limit

We can determine the higher derivative corrections to the low energy limit of the
spectral function, the photoemission rate and the conductivity at once:
X dl a(M<)~,

— < - -
X4, = —4im(NL) = 2im(M)), N5, = B 1 dQ* 2474 Q2

B N2T2

X 7=—-4Im(N,) = <(1 +125v)g + 0(62)>’
2

o= _ulyl—n;]OZnXX(w = q)

such that we can already read off the correction to the conductivity and the
photoemission rate for small frequencies (1 + 125). An anlogous computation in the
spin = 2-channel gives a correction of (1 + 1357) to the transport coefficient there.

22 /35



@ The resummation technique is an approximation using the assumption that the
correction terms to the EoM of the gauge fields of higher order are small.

@ From the level of the first order EoM we proceed computing exactly in the 't
Hooft coupling.

@ Applying this to the conductivity for A = 11.3 ~ 47 Nas|y=3 o,—0.3 We obtain a
resummed value of
o = 0.29082€T.

@ Without any coupling corrections the conductivity is given by

_ 9 27 s 2

This can be compared to results of hot QCD lattice calculations for T > 1.75T :
o~ e?T(0.31 £ 0.05)

23 /35



Results

Comparison with lattice results
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Figure: The conductivity computed via holography in the A — oo limit (red line) and the
coupling corrected and resummed results for o/e?T for A ~ 11.3 (black line) compared with

results of hot QCD lattice calculations. vt



Both the low and the high frequency limit of the spectral functions/ photoemission
rate coincide with the qualitative expectations of weak-coupling calculations:

@ In the high energy limit we have

XJ_ q,g>1 _ 7 r(l()?)) ((1_8039,}/)q2/3 =+ .. > + 0(72)5
3

@ whereas in the low energy limit

w=g N2T?2 N ) 2
@ =0 (01255 4+ 0(@)) + 067,

25 /35



Results

0/3

-corrections to the QNM-spectrum

@ Quasinormal modes (QNM) correspond to tiny perturbations of the system

@ QNM frequencies w encode the frequency and the decay rate of the response of
the system to these perturbations

@ The inverse of their negative imaginary part is proportional to the thermalization
time 7

@ They can be found as the poles of the propagator 1

@ or by formulation of the differential equations as a generalized eigenvalue problem
applying by spectral methods.

26 /35
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Results

-corrections to the QNM-spectrum

G=0 | ~v=0 O(y")-correction G=1 =0 O(y")-correction

1. QNM | 1—i | (646.132 — 207.258/) | 1. QNM | 1.54719 — 0.84972i | (298.289 + 208.6781)

2. QNM | 2-2i | ~(4896 + 495.51) 2. QNM | 2.39890 — 1.87434i (2357 4 19161)

Im(@)

1 15 2 2.5 3 3.5 2 2.5 3 35
Re(w) Re(w)

Figure: The first QNM frequencies at g = 27 T (right) and g = 0 (left) normalized by 27 T for
A = oo (blue) and their O(~y)-corrections for A = 500 (red) and A = 300 (brown).
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Results

The resummed spectrum

Im(w)
L
o
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Figure: The flow of the first 3 QNM frequencies, normalized by 27 T, with the 't Hooft
coupling between A = 0o and A = 11.3 =~ 4wasN, with N = 3 and a5 = 0.3 computed in the

resummation scheme with § = 0 (left) and § = 1 (right). The slopes of the curves at v =0
give the first order corrections.
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Results

Off-equilibrium spectral density

The coupling corrected off-equilibrium spectral density is given by

) N2T?2 265 0,A
(@) = P (1 = 2 im (22 )

2 8 Ar oo
with .
Im (AI_,_) ( gl:t 6quut + 8uAin)
A+ u=0 Cgi:t AO“t + Ain u:O.

2
We compare the cases us =1 and us = % with rg > r by calculating the quantity

X(wa US) B X(dj? ]')
x(@,1) '

R(®, us) =
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Results

Off-equilibrium spectral density

G=1b, ug = 1/1.1 G=1, ug = 1/1.012

20 40 60 80 10 20 30 40 50 60 70 80
w/T w/T

Figure: The function R, plotted for r, = 1.1 on the left side and r, = 1.01 on the right side.
In both pictures the solid red line represents the A = oo limit, whereas the dashed blue line
shows the O(+1) corrected results at A = 300.
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Results
A collection of coupling corrections

Quantity O(v°%) oY)
s(3m2N2 T3)1 1 15~
n(grN2 T3)1 1 1357
4rn/s 1 120~
o(tapuN?T)1 1 125
Sheaf(q =0)(2rT)"! | 2.585 — 2.382 | (1.029 + 0.957 /) 10% v
FM(g =0)(2rT) ! 2-2j (4.896 + 0.495 /) 103 v

Table: A collection of results for the zeroth and first order terms in the expansion of various
thermal observables in powers of v = £ ((3)A~%/2,
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Results

Summary and Outlook

@ Coupling corrections to the photoemmission rate behave as predicted by weak
coupling perturbative calculations in the high and the low energy limit.

@ The corrections to the QNM-spectrum, the transport coefficients and spectral
functions are of the same order of magnitude as in the spin 2 channel.

@ If resummed, the corrections are under control even for \ values close to the
QCD-limit.

@ The resummed coupling corrected conductivity comes close to hot-QCD-lattice
results for realistic A\ values.

@ Outlook: Compute higher derivative corrections to dynamical processes like
shockwave collisions/ isotropization etc.
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Results

Backup Slides
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Backup Slides

The coupling correction part of the O(a/3)-action:

1/d10X\/—7g|:C4+ C3T—|- C2T2+CT3+T4].

Sy =
10 2510

1 1
Cabed = Rabed — é(gacRdb — 8adReb — 8bcRda + 8bdRea) + 75 %

X (Rgacgdb - Rgadgcb)7

) 1
7;bcdef = ’VaFlj_cdef + T6(F:Z)cmn

with two sets of antisymmetrized indices a, b, ¢ and d, e, f. In addition the right hand
side is symmetrized with respect to the interchange of (a, b, ¢) + (d, e, f) (Paulos,
2008).

+mn + +mn
Fdef _3FabfmaneC )?
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Results

Backup Slides

As in the coupling correction free case we introduce gauge fields by twisting the
5-sphere.

dsZy = — r2U(u)dt? + U(u)du? + r2e?V ) (dx? + dy? + dz?)+
4A(u, t, z)? 4A.(u,t,z)
L(u)? 222220 ax® 4 L(w)? 22" dx (dys sin(y1)*+
(u) 3 (u) 73 (dyssin(y1)
dys cos(y1)? sin(y2)? + dys cos(y1)? cos(y2)?) + L(u)?(dy?+
cos(y1)?dy3 + sin(y1)*dy3 + cos(y1)? sin(y2)*dya+
cos(y1)? cos(y2)?dys).-
We consider transverse fields A, (u, z, t). Without loss of generality we may assume

that only the x-component is non-vanishing. Here U2, 2, €2V, and L2 are the

o/-corrected metric components, whose A — oo limit gives the AdS-Schartzschild
metric.
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