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Overview

e The AdS/CFT relationship is a duality weak/strong coupling

e This talk is about weak coupling perturbation theory

e String theory gives relations between gravity and gauge amplitudes
e Classical general relativity from quantum amplitudes

e Two expansions: Post-Newtonian and Post-Minkowskian

e From one-loop to all-loop: the scheme explained
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Color-ordered Yang-Mills Amplitudes

Tree-level amplitudes with n particles in the adjoint rep.

AL,2,....n) = Y Te(T“T%...T*)A(1,2,...,n)
P(2,3,...,n)

Lots of identities involving A(1,2,...,n)

Examples: simple identities like cyclicity and reflections:

A(2,3,...,n,1)
(—)"A(n,n—1,...,1)

A(1,2,...,n)
A(1,2,...,n)

Y

- plus many more.
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Color-ordered Yang-Mills Amplitudes

Tree-level amplitudes with n particles in the adjoint rep.

AL,2,....n) = Y Te(T“T%...T*)A(1,2,...,n)
P(2,3,...,n)

Lots of identities involving A(1,2,...,n)

Examples: simple identities like cyclicity and reflections:

A(2,3,...,n,1)
(—)"A(n,n—1,...,1)

A(1,2,...,n)
A(1,2,...,n)

- plus many more. The basis of operators is only of size (n — 3)!
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The Kleiss-Kuijf Relations

How many color-ordered amplitudes should be computed?

Kleiss and Kuijf suggested that the number of basis amplitudes can be
reduced from (n — 1)! to (n — 2)! because of a highly non-trivial identity:

AB1,..., B Lag,...,as,n) = (—=1)" Z A(l,0,n)

ocCOP{a}u{BT}

where the sum runs over “Ordered Permutations” OP{a} U {8?} that
maintain the order of individual elements in each set within the joint set

Example,

A({3,2},1,{4},5) = A(1,2,3,4,5) + A(1,2,4,3,5) + A(1,4,2,3,5)

This reduces the basis of amplitudes to (n — 2)!
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BCJ Relations

Recently, Bern, Carrasco and Johansson (BCJ) made some surprising
observations and a conjecture.

Consider the 4-point function:

A(1,2,3,4) + A(1,3,4,2) + A(1,4,2,3) = 0

They argue as follows: This can only be satisfied because of cancellations
due to the amplitudes’ kinematic invariants.

Then the above should be equivalent to

s+t+u = 0
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In other words,
A(1,2,3,4) + A(1,3,4,2) + A(1,4,2,3) = (s+t+u)x

where  is a universal function. Because A(1,2,3,4) is symmetric in s and
tv
A(1,2,3,4) = uy

and similarly for the other amplitudes. Solving the equations, one gets

tA(1,2,3,4) = wuA(l,3,4,2)
sA(1,2,3,4) = uA(1,4,2,3)
tA(1,4,2,3) = sA(1,3,4,2)

Checked to hold in explicit helicity amplitudes!
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Jacobi-like identities

Do such relations generalize to higher n-point functions?

Intriguing observation: Write the 4-point amplitudes in terms of the poles
that can appear:

A(1,2,3,4) = EJF%
S
A(1,3,4,2) = -l Ts
e,
A(1,4,2,3) = ——+ =2
(7 9 7) t+u

Then

This is like a Jacobi identity for the kinematic factors!
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Compare color

Coy = fa4a2bfba3a1 _ falagbfba3a4 . fagagbfba4a1 —Cs— ¢4

Full color-dressed amplitude:

CsNg CiTy

A=

S t

Symmetry between color and kinematics.
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Higher n-point functions

Does the Jacobi-like identity in 4-point functions generalize?

Bern, Carrasco and Johansson take as ansatz that for every color Jacobi
identity

Ca = CB — Cy
there is a kinematical Jacobi identity

Much more complicated now!

Consider 5-point example: Two poles in generalized Mandelstam variables
o= (| )2
S'LJ p— (kz —|_ kj) )

n n n n n
1 4+ 2 4+ 3 4+ 4 4 5

A(1,2,3,4, 5) —
512545 523551 534512 545523 551534
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Using Kleiss-Kuijf there are (5-2)! = 6 basis amplitudes.
In total 15 numerator factors n;.

There are 9 (color) Jacobi identities, 4 n;'s can be set to zero, i.e. only
(15 - 9 - 4) = 2 independent amplitudes.

New identities!

Example:

—512545A(1,2,3,4,5) + s14(534 + 525)A(1,4, 3,2,5)

A(1,3,4,2,5) = e

All 5-point amplitudes expressed in terms of, say, A(1,2,3,4,5) and
A(1,4,3,2,5).
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An Algebra of Amplitudes?

Bern, Carrasco and Johansson generalized the Jacobi-like construction to
any n. Checked explicitly for various helicities up to 8 points. But: The
general formula remained at the level of a conjecture.

Proof of BCJ-relations from string theory (Bjerrum-Bohr, PD, Vanhove,
2010)

Existence of n's satisfying Jacobi proven (Bjerrum-Bohr, PD, T.
Sondergaard, Vanhove, 2011)

The Jacobi-like identities hint at an algebra of amplitudes.

Intriguing brand-new work by O'Connell and Monteiro, May 2011).
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String Theory

In open string theory one naturally considers color-ordered amplitudes

A(L,2,...n) = Y Te(T“T%...T*)A(1,2,...

P(2,3,...,n)

where color is supplied by the Chan-Paton factors.

Koba-Nielsen measure

‘Zab Zac zbc| 3

1=
‘:C’L' o xj|2a/k:,é-kj Fn

1<i<g<n

n —1
Alar, oo an) = /H dzi dz,dzpdz, H H(@ai -
i=1 =1
11
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dZZ'
dZi

dx; Zij = X — T; (bosonic)
dx;d0O; Zij =x; —x; + 0,0, (supersymmetric)

All helicity dependence of external states contained in Fi,.

Measure only defined after fixing 3 points, traditionally taken to be
rx1=0,2,-1 =1 and z,, = 0.

3 turns out to be the magic number!
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Explicit Amplitudes

Consider the 4-point amplitude for tachyons (z; = 0,23 = 1,24 = 4+00).
Let £ = x5:

A(1,2,3,4) = / dy 120 k1ko (1-— z)Qa’kz-kz:s

F —2a/ kl ]F[ + QO/ICQ . kg]
F[2 + 2a’kq - ko + 20k - kg]

where s = — (k1 + k2)? etc. and

s+t+u —4/d
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We can get the other color-orderings by permutations, e.g.,

F[—2Oé/]€1 . kg]r[l -+ QOé/kl . ]{3]

A(2,1,3,4) =
(7 A ) F[2+2a/k1k2+2a/k1k3]

Now use I'|—x|I'[1 + ] = —7/ sin(7x),

sin(2a/m ko - k3)

A(2,1,3,4) =
(2,1,3,4) sin(2a/w ky - k3)

A(1,2,3,4)

An exact string-theory identity! In the limit o/ — 0,
uA(2,1,3,4) = tA(1,2,3,4)

— one of the field-theory identities noted by Bern, Carrasco and Johansson.
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Monodromy

How does this generalize?

Consider the three different orderings

1
A(l, 2’ 37 4) — / dm ZC2O‘ k1k32(1 . :C)2Oé kQ-kg
0
A(l) 3,2, 4) — / dr 3320‘/ kl.kQ(x - 1)20/ ko-k3 |
1

0
A(2, 1,3,4) — / dr (_5,;)204 kzl-kz(l . x)m ko-ks

The second integral is
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Now deform the contour so that we instead integrate from —oo to 1.

Careful at branch points!

et for clockwise rotation,

(ZC—y) :(y_x>oz>< —iT o

e for counterclockwise rotation .

New contour:

e—Qi(,y’ﬂk'2~(k'1+k3) e—Z[u’ﬁ(kg-kB)
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A first bite at general relations

Because A(1,3,2,4) is real,

A(1,3,2,4) = —Re (e—%a’ﬂ kaks A(1,2,3,4)

i 6—2ia/7r kQ-(k1+k3) A(Q, 1’ 3’4))
and the imaginary part vanishes:

0 =Sm (e_%o‘/” 2R3 A(1,2,3,4)

4+ 6—2ia’7r k2-(k1—|—k3) 14(27 1’ 374)> .
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Solving this system of equations,

sin(2a/m k1 - ko)
A(l,3,2,4) = A(l,2,3,4
( ) = ) Sin(2a/ﬂ-k2‘k4) ( b B )7
A2.1,3,4) = SnCaTha-ks) 4o g ?
T sin(ad ke k)T T

which reduce to the Bern-Carrasco-Johansson identities when o/ — 0.

Note: These relations hold for all 4-point amplitudes of any statistics and
spin. The integrals change in such a way as to restore the relations.
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String Theory Kleiss-Kuijf Relations |

Consider a most general n-point amplitude.

We fix 21 = 0,24, = 1,2, = 00:

A(B1, .., 80,00, ...,a5,n) s>k

— 00; 0] 10; 1] oo[

51 ----- @-} {1} {01 1} {ak}{ak+1 Sag) {n}

By analytic continuation, flip all 5-integrations in one go:

{B1,.- ., ﬂ} {1} {a, ..., ap-1} {ak}{ak+1 Lo {n}
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This relates the original amplitude with integrations on [—o0, 0] to a sum
of integrations in the complementary region [0, 0]

0 1
/_"\/-

] — 00; 0] 10; 1] 11; 00|
{(Hay, ... ap ..., e U{B, ..., 037 {n}
op
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String Theory Kleiss-Kuijf Relations ||
Define e(®f) = ¢2ime’ (kakg) jf rg > T, and 1 otherwise.

Taking the real part:

An(ﬁla"'767“7070517"'7058777/) — (_1)T><

Ro [ H@ina’(kzﬁi-kz@j) Z ﬁ f[e(ozi,ﬁj)An(07 o, n)} :

1Zi<j<r  GCOP{a}U{pT}i=0,=1

These are “stringy Kleiss-Kuijf relations. When o’ — 0 the reduce to the
original relations:

An(ﬁla s 767“7 170517 - '7a57n) — (_1)TZ An(070-7 n)’ (3)

ocCOP{a}u{BT}
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String Theory Bern-Carrasco-Johansson Relations

The Kleiss-Kuijf relations reduce the basis to (n — 2)! because 2 points are
fixed here: 0 and oco. All permutations are allowed inside this interval.

Let us now take the imaginary part,

0 = Sm [ H€2i7ra’(k6i-k:6j) Z ﬁ ﬁe(aiaﬁj)An(L o, n):| ) (4)

1<i<j<r  oCOP{a}u{gT}i=0,=1

By systematically using these relations, we reduce to a minimal basis of size
(n — 3)! because we can force (n — 3) points to lie in the interval |0, 1].
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Proof:

e Eliminate all amplitudes with points between | — oo,0] in favor of
amplitudes with legs in the interval |0, 4o00|, using the stringy Kleiss-
Kuijf relation.

e Rewrite amplitudes A, (1,a1,..., %, 71,---,Yn—2-k, 1) Iin terms of
amplitudes with at least one ~; among the set {aj,...,ax} using
the stringy Bern-Carrasco-Johansson relation.

e There are then at most n — 3 — k elements between |1, +00].

e Repeat this procedure until amplitudes with points in the interval |1, o]
have been expressed in terms of (n — 3)! amplitudes restricted to the
interval |0, 1.
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In the o/ — 0 limit this proves the conjecture of Bern, Carrasco and
Johansson.

— Typeset by Foil TEX — 31



We learn more from string theory

Some of the most amazing relations between gravity and gauge theory
amplitudes were derived by Kawai, Lewellen and Tye (KLT) from string
theory.

A closed string amplitude factorizes into a product of two open string
amplitudes.

In the field theory limit this translates into relations between gravity
amplitudes and Yang-Mills amplitudes.
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KLT-relations: Examples

Let an n-point gravity amplitude be denoted by M (1,2,...,n).

For 4-point amplitudes (let s12 = (p1 + p2)? etc.):

M(1,2,3,4) = s124(1,2,3,4)A(3,4,2,1)

For higher n one gets a sum of terms on the right hand side.
conjectured form was known for arbitrary n.

One would like to prove these relations directly from field theory!
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New identities in gauge theories
Recently we have proven

e The general KLT-relations for any n

e A series of surprising identities in gauge theories

The proof is technical, but conceptually simple.

It uses on-shell recursion: If we know (n — 1)—point amplitudes we can
generate n—point amplitudes.
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The precise statement

Define

X {ne) = Z A(L, Bon—2,m—1,1)S[Ba,n—2|12,n—2] A(1,n—1,92 2, n)
V,BESH—3

where S is a 'kernel’ depending on external momenta s;;.

ny (n_) denotes the number of positive (negative) helicity legs in A which
is changed to negative (positive) helicity legs in A.

o When ny =n_ =0, X" = M(1,2,...,n).

e When n, #n_, x{mHm=) = o,
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First: Gravity from Gauge Theory

Pictorially:
n n—1
Mn B (_1)n+1 nlx S X :
1 1

It is as if two gluons of helicity +1 generate one graviton of helicity +2.

The 'kernel’ in the middle miraculously cancels all unwanted double poles.
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It's even more amazing

The same kernel that glues two Yang-Mills amplitudes together to give a
gravity amplitude is the generator of BCJ-relations:

0= Z §[52,n—1‘02,n—1]g(17 02,n—1, n)

0c€S,_2

after summing over one more leg.
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Proof of gravity-gauge relations

Pictorially:

Cauchy’s Theorem and factorization properties

R, ~o (Zw)ﬁ(z%{gﬁé) 4.

r/_\ BCFW expansion

~ S MeniMackir o D,

\ S12...k

Induction, BCJ relations and vanishing identities

This uses on-shell recursion relations.

Curiously: for this to hold we need quadratic vanishing identities in gauge
theory.

Those we prove separately.
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Examples
Consider a 4-point amplitude with (ny,n_) = (0,1):

~

0=s120A(17,27,37,4M)A(3T,47,27,17).

Actually, this reproduces a well-known "MHV rule’.

A new and non-trivial 5-point example with (n,,n_) = (1,0):

0=s510A(17,27,3%,47, 5% [s134(4",5%,27,37,17)
-+ (813 + 823)2{(4_‘_, 5+, 3_, 2_, 1_)]
+513A(17,3%,27,4% 57) [s10A4(47,57,37,27,17)

~

+ (312 =+ 323)A(4+7 5+7 2_7 3_7 1_)] :
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A physical interpretation

Every time we have
xXinen=) =0

we have a new non-linear identity among gauge theory amplitudes.
How can we understand these new identities?

A flipped helicity on an external leg produces (+ 1 - 1 = 0) a scalar leg.
This corresponds to gravity amplitudes with a single scalar: it vanishes.

In this way the gravity — gauge theory relation can be used to deduce
identities in Yang-Mills theory alone!
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Examples

When we flip one plus helicity and one minus helicity, i.e.

(n4,n-) =(1,1)

we get a gravity amplitude with two external scalars. It is non-zero, and we
get no new Yang-Mills identity.

When we flip only one plus helicity and no minus helicity, i.e.

(n4,n-) = (1,0)

we get a gravity amplitude with one external scalar. It vanishes, and we get
a new Yang-Mills identity.

All of this generalizes to any n.
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Generalizations

All of this generalizes to the full multiplet of NV = 4 Super Yang-Mills.

Then one gets new gauge theory identities with also fermions and scalars.

The helicity selection rules can be understood in terms of conservations of
R-symmetry charges.
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Conclusion: The message

e Sometimes hadronic physics gets input from odd directions
e String theory can guide us to new insight in field theory
e We have proven directly in field theory the KLT gravity-gauge connection

e As a by-product we have discovered new identities among Yang-Mills
amplitudes
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