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Overview

• The AdS/CFT relationship is a duality weak/strong coupling

• This talk is about weak coupling perturbation theory

• String theory gives relations between gravity and gauge amplitudes

• Classical general relativity from quantum amplitudes

• Two expansions: Post-Newtonian and Post-Minkowskian

• From one-loop to all-loop: the scheme explained
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Color-ordered Yang-Mills Amplitudes

Tree-level amplitudes with n particles in the adjoint rep.

A(1, 2, . . . , n) =
∑

P (2,3,...,n)

Tr(T a1T a2 . . . T an)A(1, 2, . . . , n)

Lots of identities involving A(1, 2, . . . , n)

Examples: simple identities like cyclicity and reflections:

A(1, 2, . . . , n) = A(2, 3, . . . , n, 1)
A(1, 2, . . . , n) = (−1)nA(n, n− 1, . . . , 1)

- plus many more.
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Tree-level amplitudes with n particles in the adjoint rep.

A(1, 2, . . . , n) =
∑

P (2,3,...,n)

Tr(T a1T a2 . . . T an)A(1, 2, . . . , n)

Lots of identities involving A(1, 2, . . . , n)

Examples: simple identities like cyclicity and reflections:

A(1, 2, . . . , n) = A(2, 3, . . . , n, 1)
A(1, 2, . . . , n) = (−1)nA(n, n− 1, . . . , 1)

- plus many more. The basis of operators is only of size (n− 3)!
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The Kleiss-Kuijf Relations

How many color-ordered amplitudes should be computed?

Kleiss and Kuijf suggested that the number of basis amplitudes can be
reduced from (n− 1)! to (n− 2)! because of a highly non-trivial identity:

A(β1, . . . , βr, 1, α1, . . . , αs, n) = (−1)r
∑

σ⊂OP{α}∪{βT }

A(1, σ, n)

where the sum runs over “Ordered Permutations” OP{α} ∪ {βT} that
maintain the order of individual elements in each set within the joint set

Example,

A({3, 2}, 1, {4}, 5) = A(1, 2, 3, 4, 5) +A(1, 2, 4, 3, 5) +A(1, 4, 2, 3, 5)

This reduces the basis of amplitudes to (n− 2)!
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BCJ Relations

Recently, Bern, Carrasco and Johansson (BCJ) made some surprising
observations and a conjecture.

Consider the 4-point function:

A(1, 2, 3, 4) +A(1, 3, 4, 2) +A(1, 4, 2, 3) = 0

They argue as follows: This can only be satisfied because of cancellations
due to the amplitudes’ kinematic invariants.

Then the above should be equivalent to

s+ t+ u = 0
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In other words,

A(1, 2, 3, 4) +A(1, 3, 4, 2) +A(1, 4, 2, 3) = (s+ t+ u)χ

where χ is a universal function. Because A(1, 2, 3, 4) is symmetric in s and
t,

A(1, 2, 3, 4) = uχ

and similarly for the other amplitudes. Solving the equations, one gets

tA(1, 2, 3, 4) = uA(1, 3, 4, 2)
sA(1, 2, 3, 4) = uA(1, 4, 2, 3)
tA(1, 4, 2, 3) = sA(1, 3, 4, 2)

Checked to hold in explicit helicity amplitudes!
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Jacobi-like identities

Do such relations generalize to higher n-point functions?

Intriguing observation: Write the 4-point amplitudes in terms of the poles
that can appear:

A(1, 2, 3, 4) =
ns

s
+

nt

t
A(1, 3, 4, 2) = −

nu

u
−

ns

s
A(1, 4, 2, 3) = −

nt

t
+

nu

u

Then

nu = ns − nt

This is like a Jacobi identity for the kinematic factors!
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Compare color

cu = fa4a2bf ba3a1 = fa1a2bf ba3a4 − fa2a3bf ba4a1 = cs − ct

Full color-dressed amplitude:

A =
csns

s
+

ctnt

t
+

cunu

u

Symmetry between color and kinematics.
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Higher n-point functions

Does the Jacobi-like identity in 4-point functions generalize?

Bern, Carrasco and Johansson take as ansatz that for every color Jacobi
identity

cα = cβ − cγ

there is a kinematical Jacobi identity

nα = nβ − nγ

Much more complicated now!

Consider 5-point example: Two poles in generalized Mandelstam variables
sij ≡ (ki + kj)

2,

A(1, 2, 3, 4, 5) =
n1

s12s45
+

n2

s23s51
+

n3

s34s12
+

n4

s45s23
+

n5

s51s34
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Using Kleiss-Kuijf there are (5-2)! = 6 basis amplitudes.

In total 15 numerator factors ni.

There are 9 (color) Jacobi identities, 4 ni’s can be set to zero, i.e. only
(15 - 9 - 4) = 2 independent amplitudes.

New identities!

Example:

A(1, 3, 4, 2, 5) =
−s12s45A(1, 2, 3, 4, 5) + s14(s34 + s25)A(1, 4, 3, 2, 5)

s13s24

All 5-point amplitudes expressed in terms of, say, A(1, 2, 3, 4, 5) and
A(1, 4, 3, 2, 5).
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An Algebra of Amplitudes?

Bern, Carrasco and Johansson generalized the Jacobi-like construction to
any n. Checked explicitly for various helicities up to 8 points. But: The
general formula remained at the level of a conjecture.

Proof of BCJ-relations from string theory (Bjerrum-Bohr, PD, Vanhove,
2010)

Existence of n’s satisfying Jacobi proven (Bjerrum-Bohr, PD, T.
Sondergaard, Vanhove, 2011)

The Jacobi-like identities hint at an algebra of amplitudes.

Intriguing brand-new work by O’Connell and Monteiro, May 2011).
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String Theory

In open string theory one naturally considers color-ordered amplitudes

A(1, 2, . . . , n) =
∑

P (2,3,...,n)

Tr(T a1T a2 . . . T an)A(1, 2, . . . , n)

where color is supplied by the Chan-Paton factors.

Koba-Nielsen measure

A(a1, · · · , an) =

∫ n∏

i=1

dzi
|zab zac zbc|

dzadzbdzc

n−1∏

i=1

H(xai+1
−xai)

×
∏

1≤i<j≤n

|xi − xj|
2α′ki·kj Fn
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dzi = dxi zij = xi − xj (bosonic)
dzi = dxidθi zij = xi − xj + θiθj (supersymmetric)

All helicity dependence of external states contained in Fn.

Measure only defined after fixing 3 points, traditionally taken to be
x1 = 0, xn−1 = 1 and xn = ∞.

3 turns out to be the magic number!
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Explicit Amplitudes

Consider the 4-point amplitude for tachyons (x1 = 0, x3 = 1, x4 = +∞).
Let x ≡ x2:

A(1, 2, 3, 4) =

∫ 1

0

dx x2α′k1·k2(1− x)2α
′k2·k3

=
Γ[−2α′k1 · k2]Γ[1 + 2α′k2 · k3]

Γ[2 + 2α′k1 · k2 + 2α′k2 · k3]

where s = −(k1 + k2)
2 etc. and

s+ t+ u = − 4/α′
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We can get the other color-orderings by permutations, e.g.,

A(2, 1, 3, 4) =
Γ[−2α′k1 · k2]Γ[1 + 2α′k1 · k3]

Γ[2 + 2α′k1 · k2 + 2α′k1 · k3]

Now use Γ[−x]Γ[1 + x] = −π/ sin(πx),

A(2, 1, 3, 4) =
sin(2α′π k2 · k3)

sin(2α′π k1 · k3)
A(1, 2, 3, 4)

An exact string-theory identity! In the limit α′ → 0,

uA(2, 1, 3, 4) = tA(1, 2, 3, 4)

– one of the field-theory identities noted by Bern, Carrasco and Johansson.
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Monodromy

How does this generalize?

Consider the three different orderings

A(1, 2, 3, 4) =

∫ 1

0

dx x2α′ k1·k2(1− x)2α
′ k2·k3

A(1, 3, 2, 4) =

∫ ∞

1

dx x2α′ k1·k2(x− 1)2α
′ k2·k3 ,

A(2, 1, 3, 4) =

∫ 0

−∞

dx (−x)2α
′ k1·k2(1− x)2α

′ k2·k3

The second integral is

0 1
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Now deform the contour so that we instead integrate from −∞ to 1.

Careful at branch points!

(x− y)α = (y − x)α ×

{
e+iπ α for clockwise rotation ,

e−iπ α for counterclockwise rotation .

New contour:

0 1

e
−2iα′

π(k2·k3)e
−2iα′

πk2·(k1+k3)
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A first bite at general relations

Because A(1, 3, 2, 4) is real,

A(1, 3, 2, 4) = −ℜe
(
e−2iα′π k2·k3 A(1, 2, 3, 4)

+ e−2iα′π k2·(k1+k3)A(2, 1, 3, 4)
)

and the imaginary part vanishes:

0 = ℑm
(
e−2iα′π k2·k3 A(1, 2, 3, 4)

+ e−2iα′π k2·(k1+k3)A(2, 1, 3, 4)
)
.

(1)
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Solving this system of equations,

A(1, 3, 2, 4) =
sin(2α′π k1 · k2)

sin(2α′π k2 · k4)
A(1, 2, 3, 4) ,

A(2, 1, 3, 4) =
sin(2α′π k2 · k3)

sin(2α′π k2 · k4)
A(1, 2, 3, 4) ,

(2)

which reduce to the Bern-Carrasco-Johansson identities when α′ → 0.

Note: These relations hold for all 4-point amplitudes of any statistics and
spin. The integrals change in such a way as to restore the relations.
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String Theory Kleiss-Kuijf Relations I

Consider a most general n-point amplitude.

We fix x1 = 0, xαk
= 1, xn = ∞:

A(β1, . . . , βr, 0, α1, . . . , αs, n) s ≥ k

0 1

{β1, . . . , βr} {α1, . . . , αk−1} {αk+1, . . . , αs}
] −∞; 0[ ]0; 1[ ]1;∞[

{1} {αk} {n}

By analytic continuation, flip all β-integrations in one go:

{β1, . . . , βr} {α1, . . . , αk−1} {αk+1, . . . , αs}

0

] −∞; 0[ ]0; 1[ ]1;∞[
{1} {αk} {n}

1flip −→
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This relates the original amplitude with integrations on [−∞, 0[ to a sum
of integrations in the complementary region [0,∞]

0 1

{α1, . . . , αk, . . . , αs} ∪ {β1, . . . , βr}
T

] −∞; 0[ ]0; 1[ ]1;∞[

{1} {n}
OP
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String Theory Kleiss-Kuijf Relations II

Define e(α,β) ≡ e2iπα
′(kα·kβ) if xβ > xα and 1 otherwise.

Taking the real part:

An(β1, . . . , βr, 0, α1, . . . , αs, n) = (−1)r×

ℜe
[∏

1≤i<j≤r

e
2iπα′(kβi·kβj)

∑

σ⊂OP{α}∪{βT }

s∏

i=0

r∏

j=1

e(αi,βj)An(0, σ, n)
]
,

These are “stringy Kleiss-Kuijf relations. When α′ → 0 the reduce to the
original relations:

An(β1, . . . , βr, 1, α1, . . . , αs, n) = (−1)r
∑

σ⊂OP{α}∪{βT }

An(0, σ, n) , (3)
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String Theory Bern-Carrasco-Johansson Relations

The Kleiss-Kuijf relations reduce the basis to (n− 2)! because 2 points are
fixed here: 0 and ∞. All permutations are allowed inside this interval.

Let us now take the imaginary part,

0 = ℑm
[∏

1≤i<j≤r

e
2iπα′(kβi·kβj)

∑

σ⊂OP{α}∪{βT }

s∏

i=0

r∏

j=1

e(αi,βj)An(1, σ, n)
]
. (4)

By systematically using these relations, we reduce to a minimal basis of size
(n− 3)! because we can force (n− 3) points to lie in the interval ]0, 1[.
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Proof:

• Eliminate all amplitudes with points between ] − ∞, 0[ in favor of
amplitudes with legs in the interval ]0,+∞[, using the stringy Kleiss-
Kuijf relation.

• Rewrite amplitudes An(1, α1, . . . , αk, γ1, . . . , γn−2−k, n) in terms of
amplitudes with at least one γi among the set {α1, . . . , αk} using
the stringy Bern-Carrasco-Johansson relation.

• There are then at most n− 3− k elements between ]1,+∞[.

• Repeat this procedure until amplitudes with points in the interval ]1,∞]
have been expressed in terms of (n − 3)! amplitudes restricted to the
interval ]0, 1[.
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In the α′ → 0 limit this proves the conjecture of Bern, Carrasco and
Johansson.
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We learn more from string theory

Some of the most amazing relations between gravity and gauge theory
amplitudes were derived by Kawai, Lewellen and Tye (KLT) from string
theory.

A closed string amplitude factorizes into a product of two open string
amplitudes.

In the field theory limit this translates into relations between gravity
amplitudes and Yang-Mills amplitudes.
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KLT-relations: Examples

Let an n-point gravity amplitude be denoted by M(1, 2, . . . , n).

For 4-point amplitudes (let s12 = (p1 + p2)
2 etc.):

M(1, 2, 3, 4) = s12A(1, 2, 3, 4)A(3, 4, 2, 1)

For higher n one gets a sum of terms on the right hand side. Only a
conjectured form was known for arbitrary n.

One would like to prove these relations directly from field theory!
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New identities in gauge theories

Recently we have proven

• The general KLT-relations for any n

• A series of surprising identities in gauge theories

The proof is technical, but conceptually simple.

It uses on-shell recursion: If we know (n − 1)–point amplitudes we can
generate n–point amplitudes.
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The precise statement

Define

X(n+,n−)
n =

∑

γ,β∈Sn−3

A(1, β2,n−2, n−1, n)S̃[β2,n−2|γ2,n−2]Ã(1, n−1, γ2,n−2, n)

where S̃ is a ’kernel’ depending on external momenta sij.

n+ (n−) denotes the number of positive (negative) helicity legs in A which

is changed to negative (positive) helicity legs in Ã.

• When n+ = n− = 0, X
(0,0)
n = M(1, 2, . . . , n).

• When n+ 6= n−, X
(n+,n−)
n = 0.
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First: Gravity from Gauge Theory

Pictorially:

It is as if two gluons of helicity +1 generate one graviton of helicity +2.

The ’kernel’ in the middle miraculously cancels all unwanted double poles.
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It’s even more amazing

The same kernel that glues two Yang-Mills amplitudes together to give a
gravity amplitude is the generator of BCJ-relations:

0 =
∑

σ∈Sn−2

S̃[β2,n−1|σ2,n−1]Ã(1, σ2,n−1, n)

after summing over one more leg.
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Proof of gravity-gauge relations

Pictorially:

This uses on-shell recursion relations.

Curiously: for this to hold we need quadratic vanishing identities in gauge
theory.

Those we prove separately.
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Examples

Consider a 4-point amplitude with (n+, n−) = (0, 1):

0 = s12A(1
−, 2−, 3+, 4+)Ã(3+, 4+, 2+, 1−).

Actually, this reproduces a well-known ’MHV rule’.

A new and non-trivial 5-point example with (n+, n−) = (1, 0):

0 = s12A(1
−, 2−, 3+, 4+, 5+)

[
s13Ã(4+, 5+, 2−, 3−, 1−)

+ (s13 + s23)Ã(4
+, 5+, 3−, 2−, 1−)

]

+ s13A(1
−, 3+, 2−, 4+, 5+)

[
s12Ã(4

+, 5+, 3−, 2−, 1−)

+ (s12 + s23)Ã(4
+, 5+, 2−, 3−, 1−)

]
.
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A physical interpretation

Every time we have
X(n+,n−)

n = 0

we have a new non-linear identity among gauge theory amplitudes.

How can we understand these new identities?

A flipped helicity on an external leg produces (+ 1 - 1 = 0) a scalar leg.
This corresponds to gravity amplitudes with a single scalar: it vanishes.

In this way the gravity – gauge theory relation can be used to deduce
identities in Yang-Mills theory alone!
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Examples

When we flip one plus helicity and one minus helicity, i.e.

(n+, n−) = (1, 1)

we get a gravity amplitude with two external scalars. It is non-zero, and we
get no new Yang-Mills identity.

When we flip only one plus helicity and no minus helicity, i.e.

(n+, n−) = (1, 0)

we get a gravity amplitude with one external scalar. It vanishes, and we get
a new Yang-Mills identity.

All of this generalizes to any n.
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Generalizations

All of this generalizes to the full multiplet of N = 4 Super Yang-Mills.

Then one gets new gauge theory identities with also fermions and scalars.

The helicity selection rules can be understood in terms of conservations of
R-symmetry charges.
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Conclusion: The message

• Sometimes hadronic physics gets input from odd directions

• String theory can guide us to new insight in field theory

• We have proven directly in field theory the KLT gravity-gauge connection

• As a by-product we have discovered new identities among Yang-Mills
amplitudes
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