Perturbative Gravity and the link to Gauge Theory

Talk by P.H. Damgaard at "Quantum Gravity meets Lattice QCD", ECT* Trento

Work done with L. Planté, E. Bjerrum-Bohr, G. Festuccia, and P. Vanhove

September 6 2018

• The AdS/CFT relationship is a duality weak/strong coupling

- The AdS/CFT relationship is a duality weak/strong coupling
- This talk is about weak coupling perturbation theory

- The AdS/CFT relationship is a duality weak/strong coupling
- This talk is about weak coupling perturbation theory
- String theory gives relations between gravity and gauge amplitudes

- The AdS/CFT relationship is a duality weak/strong coupling
- This talk is about weak coupling perturbation theory
- String theory gives relations between gravity and gauge amplitudes
- Classical general relativity from quantum amplitudes

- The AdS/CFT relationship is a duality weak/strong coupling
- This talk is about weak coupling perturbation theory
- String theory gives relations between gravity and gauge amplitudes
- Classical general relativity from quantum amplitudes
- Two expansions: Post-Newtonian and Post-Minkowskian

- The AdS/CFT relationship is a duality weak/strong coupling
- This talk is about weak coupling perturbation theory
- String theory gives relations between gravity and gauge amplitudes
- Classical general relativity from quantum amplitudes
- Two expansions: Post-Newtonian and Post-Minkowskian
- From one-loop to all-loop: the scheme explained

Color-ordered Yang-Mills Amplitudes

Tree-level amplitudes with n particles in the adjoint rep.

$$\mathcal{A}(1,2,\ldots,n) = \sum_{P(2,3,\ldots,n)} \text{Tr}(T^{a_1}T^{a_2}\ldots T^{a_n}) A(1,2,\ldots,n)$$

Lots of identities involving A(1, 2, ..., n)

Examples: simple identities like cyclicity and reflections:

$$A(1,2,...,n) = A(2,3,...,n,1)$$

 $A(1,2,...,n) = (-1)^n A(n,n-1,...,1)$

- plus many more.

Color-ordered Yang-Mills Amplitudes

Tree-level amplitudes with n particles in the adjoint rep.

$$\mathcal{A}(1,2,\ldots,n) = \sum_{P(2,3,\ldots,n)} \text{Tr}(T^{a_1}T^{a_2}\ldots T^{a_n}) A(1,2,\ldots,n)$$

Lots of identities involving A(1, 2, ..., n)

Examples: simple identities like cyclicity and reflections:

$$A(1,2,...,n) = A(2,3,...,n,1)$$

 $A(1,2,...,n) = (-1)^n A(n,n-1,...,1)$

- plus many more. The basis of operators is only of size (n-3)!

The Kleiss-Kuijf Relations

How many color-ordered amplitudes should be computed?

Kleiss and Kuijf suggested that the number of basis amplitudes can be reduced from (n-1)! to (n-2)! because of a highly non-trivial identity:

$$A(\beta_1, \dots, \beta_r, 1, \alpha_1, \dots, \alpha_s, n) = (-1)^r \sum_{\sigma \in \text{OP}\{\alpha\} \cup \{\beta^T\}} A(1, \sigma, n)$$

where the sum runs over "Ordered Permutations" $\mathrm{OP}\{\alpha\} \cup \{\beta^T\}$ that maintain the order of individual elements in each set within the joint set Example,

$$A({3,2}, 1, {4}, 5) = A(1,2,3,4,5) + A(1,2,4,3,5) + A(1,4,2,3,5)$$

This reduces the basis of amplitudes to (n-2)!

BCJ Relations

Recently, Bern, Carrasco and Johansson (BCJ) made some surprising observations and a conjecture.

Consider the 4-point function:

$$A(1,2,3,4) + A(1,3,4,2) + A(1,4,2,3) = 0$$

They argue as follows: This can only be satisfied because of cancellations due to the amplitudes' kinematic invariants.

Then the above should be equivalent to

$$s+t+u = 0$$

In other words,

$$A(1,2,3,4) + A(1,3,4,2) + A(1,4,2,3) = (s+t+u)\chi$$

where χ is a universal function. Because A(1,2,3,4) is symmetric in s and t,

$$A(1,2,3,4) = u\chi$$

and similarly for the other amplitudes. Solving the equations, one gets

$$tA(1,2,3,4) = uA(1,3,4,2)$$

 $sA(1,2,3,4) = uA(1,4,2,3)$
 $tA(1,4,2,3) = sA(1,3,4,2)$

Checked to hold in explicit helicity amplitudes!

Jacobi-like identities

Do such relations generalize to higher n-point functions?

Intriguing observation: Write the 4-point amplitudes in terms of the poles that can appear:

$$A(1,2,3,4) = \frac{n_s}{s} + \frac{n_t}{t}$$

$$A(1,3,4,2) = -\frac{n_u}{t} - \frac{n_s}{t}$$

$$A(1,4,2,3) = -\frac{n_t}{t} + \frac{n_u}{u}$$

Then

$$n_u = n_s - n_t$$

This is like a Jacobi identity for the kinematic factors!

Compare color

$$c_u = f^{a_4 a_2 b} f^{b a_3 a_1} = f^{a_1 a_2 b} f^{b a_3 a_4} - f^{a_2 a_3 b} f^{b a_4 a_1} = c_s - c_t$$

Full color-dressed amplitude:

$$\mathcal{A} = \frac{c_s n_s}{s} + \frac{c_t n_t}{t} + \frac{c_u n_u}{u}$$

Symmetry between color and kinematics.

Higher *n***-point** functions

Does the Jacobi-like identity in 4-point functions generalize?

Bern, Carrasco and Johansson take as ansatz that for every color Jacobi identity

$$c_{\alpha} = c_{\beta} - c_{\gamma}$$

there is a kinematical Jacobi identity

$$n_{\alpha} = n_{\beta} - n_{\gamma}$$

Much more complicated now!

Consider 5-point example: Two poles in generalized Mandelstam variables $s_{ij} \equiv (k_i + k_j)^2$,

$$A(1,2,3,4,5) = \frac{n_1}{s_{12}s_{45}} + \frac{n_2}{s_{23}s_{51}} + \frac{n_3}{s_{34}s_{12}} + \frac{n_4}{s_{45}s_{23}} + \frac{n_5}{s_{51}s_{34}}$$

Using Kleiss-Kuijf there are (5-2)! = 6 basis amplitudes.

In total 15 numerator factors n_i .

There are 9 (color) Jacobi identities, 4 n_i 's can be set to zero, i.e. only (15 - 9 - 4) = 2 independent amplitudes.

New identities!

Example:

$$A(1,3,4,2,5) = \frac{-s_{12}s_{45}A(1,2,3,4,5) + s_{14}(s_{34} + s_{25})A(1,4,3,2,5)}{s_{13}s_{24}}$$

All 5-point amplitudes expressed in terms of, say, A(1,2,3,4,5) and A(1,4,3,2,5).

An Algebra of Amplitudes?

Bern, Carrasco and Johansson generalized the Jacobi-like construction to any n. Checked explicitly for various helicities up to 8 points. But: The general formula remained at the level of a conjecture.

Proof of BCJ-relations from string theory (Bjerrum-Bohr, PD, Vanhove, 2010)

Existence of n's satisfying Jacobi proven (Bjerrum-Bohr, PD, T. Sondergaard, Vanhove, 2011)

The Jacobi-like identities hint at an algebra of amplitudes.

Intriguing brand-new work by O'Connell and Monteiro, May 2011).

String Theory

In open string theory one naturally considers color-ordered amplitudes

$$\mathcal{A}(1,2,\ldots,n) = \sum_{P(2,3,\ldots,n)} \text{Tr}(T^{a_1}T^{a_2}\ldots T^{a_n}) A(1,2,\ldots,n)$$

where color is supplied by the Chan-Paton factors.

Koba-Nielsen measure

$$A(a_{1}, \dots, a_{n}) = \int \prod_{i=1}^{n} dz_{i} \frac{|z_{ab} z_{ac} z_{bc}|}{dz_{a} dz_{b} dz_{c}} \prod_{i=1}^{n-1} H(x_{a_{i+1}} - x_{a_{i}})$$

$$\times \prod_{1 \leq i < j \leq n} |x_{i} - x_{j}|^{2\alpha' k_{i} \cdot k_{j}} F_{n}$$

$$dz_i = dx_i$$
 $z_{ij} = x_i - x_j$ (bosonic)
 $dz_i = dx_i d\theta_i$ $z_{ij} = x_i - x_j + \theta_i \theta_j$ (supersymmetric)

All helicity dependence of external states contained in F_n .

Measure only defined after fixing 3 points, traditionally taken to be $x_1 = 0, x_{n-1} = 1$ and $x_n = \infty$.

3 turns out to be the magic number!

Explicit Amplitudes

Consider the 4-point amplitude for tachyons $(x_1 = 0, x_3 = 1, x_4 = +\infty)$. Let $x \equiv x_2$:

$$A(1,2,3,4) = \int_0^1 dx \, x^{2\alpha' k_1 \cdot k_2} (1-x)^{2\alpha' k_2 \cdot k_3}$$
$$= \frac{\Gamma[-2\alpha' k_1 \cdot k_2] \Gamma[1+2\alpha' k_2 \cdot k_3]}{\Gamma[2+2\alpha' k_1 \cdot k_2 + 2\alpha' k_2 \cdot k_3]}$$

where $s = -(k_1 + k_2)^2$ etc. and

$$s+t+u = -4/\alpha'$$

We can get the other color-orderings by permutations, e.g.,

$$A(2,1,3,4) = \frac{\Gamma[-2\alpha'k_1 \cdot k_2]\Gamma[1 + 2\alpha'k_1 \cdot k_3]}{\Gamma[2 + 2\alpha'k_1 \cdot k_2 + 2\alpha'k_1 \cdot k_3]}$$

Now use $\Gamma[-x]\Gamma[1+x] = -\pi/\sin(\pi x)$,

$$A(2,1,3,4) = \frac{\sin(2\alpha'\pi k_2 \cdot k_3)}{\sin(2\alpha'\pi k_1 \cdot k_3)} A(1,2,3,4)$$

An exact string-theory identity! In the limit $\alpha' \to 0$,

$$uA(2,1,3,4) = tA(1,2,3,4)$$

- one of the field-theory identities noted by Bern, Carrasco and Johansson.

Monodromy

How does this generalize?

Consider the three different orderings

$$A(1,2,3,4) = \int_0^1 dx \ x^{2\alpha' k_1 \cdot k_2} (1-x)^{2\alpha' k_2 \cdot k_3}$$

$$A(1,3,2,4) = \int_1^\infty dx \ x^{2\alpha' k_1 \cdot k_2} (x-1)^{2\alpha' k_2 \cdot k_3},$$

$$A(2,1,3,4) = \int_{-\infty}^0 dx \ (-x)^{2\alpha' k_1 \cdot k_2} (1-x)^{2\alpha' k_2 \cdot k_3}$$

The second integral is

Now deform the contour so that we instead integrate from $-\infty$ to 1. Careful at branch points!

$$(x-y)^{\alpha} = (y-x)^{\alpha} \times \begin{cases} e^{+i\pi\alpha} & \text{for clockwise rotation,} \\ e^{-i\pi\alpha} & \text{for counterclockwise rotation.} \end{cases}$$

New contour:

A first bite at general relations

Because A(1,3,2,4) is real,

$$A(1,3,2,4) = -\Re \left(e^{-2i\alpha'\pi k_2 \cdot k_3} A(1,2,3,4) + e^{-2i\alpha'\pi k_2 \cdot (k_1 + k_3)} A(2,1,3,4)\right)$$

and the imaginary part vanishes:

$$0 = \Im \left(e^{-2i\alpha'\pi \, k_2 \cdot k_3} \, A(1, 2, 3, 4) + e^{-2i\alpha'\pi \, k_2 \cdot (k_1 + k_3)} \, A(2, 1, 3, 4) \right) . \tag{1}$$

Solving this system of equations,

$$A(1,3,2,4) = \frac{\sin(2\alpha'\pi k_1 \cdot k_2)}{\sin(2\alpha'\pi k_2 \cdot k_4)} A(1,2,3,4) ,$$

$$A(2,1,3,4) = \frac{\sin(2\alpha'\pi k_2 \cdot k_3)}{\sin(2\alpha'\pi k_2 \cdot k_4)} A(1,2,3,4) ,$$
(2)

which reduce to the Bern-Carrasco-Johansson identities when $\alpha' \to 0$.

Note: These relations hold for all 4-point amplitudes of any statistics and spin. The integrals change in such a way as to restore the relations.

String Theory Kleiss-Kuijf Relations I

Consider a most general *n*-point amplitude.

We fix
$$x_1 = 0, x_{\alpha_k} = 1, x_n = \infty$$
:

$$A(\beta_1, \dots, \beta_r, 0, \alpha_1, \dots, \alpha_s, n)$$
 $s \ge k$

By analytic continuation, flip all β -integrations in one go:

This relates the original amplitude with integrations on $[-\infty,0[$ to a sum of integrations in the complementary region $[0,\infty]$

String Theory Kleiss-Kuijf Relations II

Define $e^{(\alpha,\beta)} \equiv e^{2i\pi\alpha'(k_\alpha \cdot k_\beta)}$ if $x_\beta > x_\alpha$ and 1 otherwise.

Taking the real part:

$$A_n(\beta_1, \dots, \beta_r, 0, \alpha_1, \dots, \alpha_s, n) = (-1)^r \times \Re\left[\prod_{1 \le i < j \le r} e^{2i\pi\alpha'(k_{\beta_i} \cdot k_{\beta_j})} \sum_{\sigma \subset \text{OP}\{\alpha\} \cup \{\beta^T\}} \prod_{i=0}^s \prod_{j=1}^r e^{(\alpha_i, \beta_j)} A_n(0, \sigma, n)\right],$$

These are "stringy Kleiss-Kuijf relations. When $\alpha' \to 0$ the reduce to the original relations:

$$A_n(\beta_1, \dots, \beta_r, 1, \alpha_1, \dots, \alpha_s, n) = (-1)^r \sum_{\sigma \in \text{OP}\{\alpha\} \cup \{\beta^T\}} A_n(0, \sigma, n), \qquad (3)$$

String Theory Bern-Carrasco-Johansson Relations

The Kleiss-Kuijf relations reduce the basis to (n-2)! because 2 points are fixed here: 0 and ∞ . All permutations are allowed inside this interval.

Let us now take the imaginary part,

$$0 = \Im \left[\prod_{1 \le i < j \le r} e^{2i\pi\alpha'(k_{\beta_i} \cdot k_{\beta_j})} \sum_{\sigma \subset \mathrm{OP}\{\alpha\} \cup \{\beta^T\}} \prod_{i=0}^s \prod_{j=1}^r e^{(\alpha_i, \beta_j)} A_n(1, \sigma, n) \right]. \tag{4}$$

By systematically using these relations, we reduce to a *minimal basis* of size (n-3)! because we can force (n-3) points to lie in the interval]0,1[.

Proof:

- Eliminate all amplitudes with points between $]-\infty,0[$ in favor of amplitudes with legs in the interval $]0,+\infty[$, using the stringy Kleiss-Kuijf relation.
- Rewrite amplitudes $A_n(1, \alpha_1, \ldots, \alpha_k, \gamma_1, \ldots, \gamma_{n-2-k}, n)$ in terms of amplitudes with at least one γ_i among the set $\{\alpha_1, \ldots, \alpha_k\}$ using the stringy Bern-Carrasco-Johansson relation.
- There are then at most n-3-k elements between $]1,+\infty[$.
- Repeat this procedure until amplitudes with points in the interval $]1,\infty]$ have been expressed in terms of (n-3)! amplitudes restricted to the interval]0,1[.

In the $\alpha' \to 0$ limit this proves the conjecture of Bern, Carrasco and Johansson.

We learn more from string theory

Some of the most amazing relations between gravity and gauge theory amplitudes were derived by Kawai, Lewellen and Tye (KLT) from string theory.

A closed string amplitude factorizes into a product of two open string amplitudes.

In the field theory limit this translates into relations between gravity amplitudes and Yang-Mills amplitudes.

KLT-relations: Examples

Let an n-point gravity amplitude be denoted by $M(1, 2, \ldots, n)$.

For 4-point amplitudes (let $s_{12} = (p_1 + p_2)^2$ etc.):

$$M(1,2,3,4) = s_{12}A(1,2,3,4)A(3,4,2,1)$$

For higher n one gets a sum of terms on the right hand side. Only a conjectured form was known for arbitrary n.

One would like to prove these relations directly from field theory!

New identities in gauge theories

Recently we have proven

- ullet The general KLT-relations for any n
- A series of surprising identities in gauge theories

The proof is technical, but conceptually simple.

It uses *on-shell recursion*: If we know (n-1)—point amplitudes we can generate n—point amplitudes.

The precise statement

Define

$$X_n^{(n_+,n_-)} = \sum_{\gamma,\beta \in S_{n-3}} A(1,\beta_{2,n-2},n-1,n) \widetilde{\mathcal{S}}[\beta_{2,n-2}|\gamma_{2,n-2}] \widetilde{A}(1,n-1,\gamma_{2,n-2},n)$$

where $\widetilde{\mathcal{S}}$ is a 'kernel' depending on external momenta s_{ij} .

 n_+ (n_-) denotes the number of positive (negative) helicity legs in A which is changed to negative (positive) helicity legs in \widetilde{A} .

- When $n_+ = n_- = 0$, $X_n^{(0,0)} = M(1, 2, \dots, n)$.
- When $n_+ \neq n_-$, $X_n^{(n_+,n_-)} = 0$.

First: Gravity from Gauge Theory

Pictorially:

$$M_n = (-1)^{n+1} \sum_{n=1}^{n} \underbrace{\tilde{A}_n}_{1} \times \mathcal{S} \times \underbrace{\tilde{A}_n}_{1}$$

It is as if two gluons of helicity +1 generate one graviton of helicity +2.

The 'kernel' in the middle miraculously cancels all unwanted double poles.

It's even more amazing

The same kernel that glues two Yang-Mills amplitudes together to give a gravity amplitude is the **generator of BCJ-relations**:

$$0 = \sum_{\sigma \in S_{n-2}} \widetilde{\mathcal{S}}[\beta_{2,n-1} | \sigma_{2,n-1}] \widetilde{A}(1, \sigma_{2,n-1}, n)$$

after summing over one more leg.

Proof of gravity-gauge relations

Pictorially:

$$R_n \sim \left(\sum \frac{\sum_{s_{12...k}} S \times \sum_{s_{12...k}} 1}{s_{12...k}} \right) \frac{1}{s_{12...k}} \left(\sum_{s_{12...k}} S \times \sum_{s_{12...k}} M_n \right) + \cdots$$

$$= \sum_{s_{12...k}} \frac{M_{k+1} M_{n-k+1}}{s_{12...k}} + \cdots \sim M_n$$
Induction, BCJ relations and vanishing identities

This uses on-shell recursion relations.

Curiously: for this to hold we need quadratic *vanishing identities* in gauge theory.

Those we prove separately.

Examples

Consider a 4-point amplitude with $(n_+, n_-) = (0, 1)$:

$$0 = s_{12}A(1^-, 2^-, 3^+, 4^+)\widetilde{A}(3^+, 4^+, 2^+, 1^-).$$

Actually, this reproduces a well-known 'MHV rule'.

A new and non-trivial 5-point example with $(n_+, n_-) = (1, 0)$:

$$0 = s_{12}A(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}) [s_{13}\widetilde{A}(4^{+}, 5^{+}, 2^{-}, 3^{-}, 1^{-})$$

$$+ (s_{13} + s_{23})\widetilde{A}(4^{+}, 5^{+}, 3^{-}, 2^{-}, 1^{-})]$$

$$+ s_{13}A(1^{-}, 3^{+}, 2^{-}, 4^{+}, 5^{+}) [s_{12}\widetilde{A}(4^{+}, 5^{+}, 3^{-}, 2^{-}, 1^{-})$$

$$+ (s_{12} + s_{23})\widetilde{A}(4^{+}, 5^{+}, 2^{-}, 3^{-}, 1^{-})].$$

A physical interpretation

Every time we have

$$X_n^{(n_+, n_-)} = 0$$

we have a new non-linear identity among gauge theory amplitudes.

How can we understand these new identities?

A flipped helicity on an external leg produces (+1 - 1 = 0) a scalar leg. This corresponds to gravity amplitudes with a single scalar: **it vanishes**.

In this way the gravity – gauge theory relation can be used to deduce identities in Yang-Mills theory alone!

Examples

When we flip one plus helicity and one minus helicity, i.e.

$$(n_+, n_-) = (1, 1)$$

we get a gravity amplitude with two external scalars. It is non-zero, and we get no new Yang-Mills identity.

When we flip only one plus helicity and no minus helicity, i.e.

$$(n_+, n_-) = (1, 0)$$

we get a gravity amplitude with *one* external scalar. It vanishes, and we get a new Yang-Mills identity.

All of this generalizes to any n.

Generalizations

All of this generalizes to the full multiplet of $\mathcal{N}=4$ Super Yang-Mills.

Then one gets new gauge theory identities with also fermions and scalars.

The helicity selection rules can be understood in terms of conservations of R-symmetry charges.

Conclusion: The message

- Sometimes hadronic physics gets input from odd directions
- String theory can guide us to new insight in field theory
- We have proven directly in field theory the KLT gravity-gauge connection
- As a by-product we have discovered new identities among Yang-Mills amplitudes