Calculating Entanglement entropy on the lattice

<u>Andreas Rabenstein</u>, N. Bodendorfer, P. Buividovich, A. Schäfer

University of Regensburg - Institute for Theoretical Physics

09/05/2018, Quantum Gravity meets Lattice QFT, Trento

[Brodsky '08]

Weak form of AdS/CFT

Classical SUGRA,
$$g_s
ightarrow 0$$
, $\frac{\alpha'}{L^2}
ightarrow 0$

$$\leftrightarrow \begin{array}{|c|} \mathcal{N} = 4 \text{ YM} \\ N_c \to \infty, \ \lambda \text{ large} \end{array}$$

[Brodsky '08]

Weak form of AdS/CFT

Classical SUGRA,
$$g_s
ightarrow 0$$
, $\frac{lpha'}{L^2}
ightarrow 0$

$$\leftrightarrow \begin{array}{c} \mathcal{N} = 4 \text{ YM} \\ N_c \to \infty, \ \lambda \text{ large} \end{array}$$

• QCD is not SUSY, has $N_c = 3$, λ finite, . . .

[Brodsky '08]

Weak form of AdS/CFT

Classical SUGRA,
$$g_s \rightarrow 0, \ \frac{\alpha'}{L^2} \rightarrow 0$$

$$\leftrightarrow \begin{array}{c} \mathcal{N} = 4 \text{ YM} \\ N_c \to \infty, \ \lambda \text{ large} \end{array}$$

- QCD is not SUSY, has $N_c = 3$, λ finite, . . .
- \rightarrow Calculate corrections [This workshop: Waeber]

Weak form of AdS/CFT

Classical SUGRA,
$$g_s \rightarrow 0, \ \frac{\alpha'}{L^2} \rightarrow 0$$

$$\leftrightarrow \begin{array}{|c|} \mathcal{N} = 4 \text{ YM} \\ N_c \to \infty, \ \lambda \text{ large} \end{array}$$

- QCD is not SUSY, has $N_c=3,\,\lambda$ finite, \ldots
- \rightarrow Calculate corrections [This workshop: Waeber]
- $\rightarrow\,$ Calculate observable in both theories and compare, e.g. Entanglement Entropy

2 Entanglement entropy

3 Holographic Entanglement Entropy

Intanglement entropy on the lattice

2 Entanglement entropy

3 Holographic Entanglement Entropy

• 2-Qubit-system

$$\mathcal{H} = \mathcal{H}_{\mathsf{qubit}} \otimes \mathcal{H}_{\mathsf{qubit}} = \mathsf{span}\left\{ \left|\uparrow\uparrow\right\rangle, \left|\uparrow\downarrow\right\rangle, \left|\downarrow\uparrow\right\rangle, \left|\downarrow\downarrow\right\rangle\right\}$$

• 2-Qubit-system

$$\mathcal{H} = \mathcal{H}_{\mathsf{qubit}} \otimes \mathcal{H}_{\mathsf{qubit}} = \mathsf{span}\left\{ \left|\uparrow\uparrow\right\rangle, \left|\uparrow\downarrow\right\rangle, \left|\downarrow\uparrow\right\rangle, \left|\downarrow\downarrow\right\rangle\right\}$$

• Basis states are clearly separable

• 2-Qubit-system

 $\mathcal{H} = \mathcal{H}_{\mathsf{qubit}} \otimes \mathcal{H}_{\mathsf{qubit}} = \mathsf{span}\left\{ \left|\uparrow\uparrow\right\rangle, \left|\uparrow\downarrow\right\rangle, \left|\downarrow\uparrow\right\rangle, \left|\downarrow\downarrow\right\rangle\right\}$

- Basis states are clearly separable
- But EPR/Bell/cat state

$$\frac{1}{\sqrt{2}}\left(\left|\uparrow\uparrow\right\rangle+\left|\downarrow\downarrow\right\rangle\right)$$

not separable

• 2-Qubit-system

 $\mathcal{H} = \mathcal{H}_{\mathsf{qubit}} \otimes \mathcal{H}_{\mathsf{qubit}} = \mathsf{span}\left\{ \left|\uparrow\uparrow\right\rangle, \left|\uparrow\downarrow\right\rangle, \left|\downarrow\uparrow\right\rangle, \left|\downarrow\downarrow\right\rangle\right\}$

- Basis states are clearly separable \rightarrow not entangled
- But EPR/Bell/cat state

$$\frac{1}{\sqrt{2}}\left(\left|\uparrow\uparrow\right\rangle+\left|\downarrow\downarrow\right\rangle\right)$$

not separable \rightarrow entangled

• Lattice system with $\mathcal{H} = \otimes_{\alpha} \mathcal{H}_{\alpha}$

• Lattice system with $\mathcal{H} = \otimes_{\alpha} \mathcal{H}_{\alpha}$

- Lattice system with $\mathcal{H} = \otimes_{\alpha} \mathcal{H}_{\alpha}$
- \bullet Choose region ${\mathcal A}$ with

$$\mathcal{H}=\mathcal{H}_{\mathcal{A}}\otimes\mathcal{H}_{\bar{\mathcal{A}}}$$

- Lattice system with $\mathcal{H} = \otimes_{\alpha} \mathcal{H}_{\alpha}$
- \bullet Choose region ${\mathcal A}$ with

 $\mathcal{H}=\mathcal{H}_{\mathcal{A}}\otimes\mathcal{H}_{\bar{\mathcal{A}}}$

• Density matrix $ho = \left|\psi\right\rangle \left\langle\psi\right|$

- Lattice system with $\mathcal{H} = \otimes_{\alpha} \mathcal{H}_{\alpha}$
- \bullet Choose region ${\mathcal A}$ with

 $\mathcal{H} = \mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\bar{\mathcal{A}}}$

- Density matrix $\rho = \left|\psi\right\rangle \left\langle\psi\right|$
- Reduced density matrix

$$\rho_{\mathcal{A}} = \operatorname{tr}_{\bar{\mathcal{A}}} \rho$$

- Lattice system with $\mathcal{H}=\otimes_{\alpha}\mathcal{H}_{\alpha}$
- \bullet Choose region ${\mathcal A}$ with

 $\mathcal{H}=\mathcal{H}_{\mathcal{A}}\otimes\mathcal{H}_{\bar{\mathcal{A}}}$

- Density matrix $\rho = \left|\psi\right\rangle \left\langle\psi\right|$
- Reduced density matrix

 $\rho_{\mathcal{A}} = \operatorname{tr}_{\bar{\mathcal{A}}} \rho$

• Quantification of entanglement

 $S_{\mathsf{EE}} = -\operatorname{tr}_{\mathcal{A}}\left(\rho_{\mathcal{A}}\log(\rho_{\mathcal{A}})\right)$

Entanglement Entropy

$$S_{\mathsf{EE}} = -\operatorname{tr}_{\mathcal{A}}\left(\rho_{\mathcal{A}}\log(\rho_{\mathcal{A}})\right)$$

$$S_{\mathsf{EE}} = -\operatorname{tr}_{\mathcal{A}}\left(\rho_{\mathcal{A}}\log(\rho_{\mathcal{A}})\right)$$

Rényi Entropy

$$S^{(q)} = \frac{1}{q-1} \log \left(\operatorname{tr}_{\mathcal{A}} \left(\rho_{\mathcal{A}}^{q} \right) \right) \qquad q \in \mathbb{Z}_{+}$$

$$S_{\mathsf{EE}} = -\operatorname{tr}_{\mathcal{A}}\left(\rho_{\mathcal{A}}\log(\rho_{\mathcal{A}})\right)$$

Rényi Entropy

$$S^{(q)} = \frac{1}{q-1} \log \left(\operatorname{tr}_{\mathcal{A}} \left(\rho_{\mathcal{A}}^{q} \right) \right) \qquad q \in \mathbb{Z}_{+}$$

Analytic continuation $q \in \mathbb{R}_+$

$$\lim_{q \to 1} S^{(q)} = S_{\mathsf{EE}}$$

- 2-Qubit-system
 - Non-entangled state

 $|\psi\rangle = |\!\uparrow\uparrow\rangle$

- 2-Qubit-system
 - Non-entangled state

$$\begin{aligned} |\psi\rangle &= |\uparrow\uparrow\rangle\\ \rho_{\mathcal{A}} &= _{\bar{\mathcal{A}}} \left<\uparrow |\psi\rangle \left<\psi\right|\uparrow\rangle_{\bar{\mathcal{A}}} + _{\bar{\mathcal{A}}} \left<\downarrow |\psi\rangle \left<\psi\right|\downarrow\rangle_{\bar{\mathcal{A}}}\\ &= \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix} \end{aligned}$$

- 2-Qubit-system
 - Non-entangled state

$$\begin{aligned} |\psi\rangle &= |\uparrow\uparrow\rangle\\ \rho_{\mathcal{A}} &= \frac{1}{\mathcal{A}} \langle\uparrow|\psi\rangle \langle\psi|\uparrow\rangle_{\bar{\mathcal{A}}} + \frac{1}{\mathcal{A}} \langle\downarrow|\psi\rangle \langle\psi|\downarrow\rangle_{\bar{\mathcal{A}}}\\ &= \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix}\\ S_{A} &= -\operatorname{tr}\left(\rho_{A}\log\rho_{A}\right) = 0 \end{aligned}$$

- 2-Qubit-system
 - Non-entangled state

$$\begin{aligned} |\psi\rangle &= |\uparrow\uparrow\rangle\\ \rho_{\mathcal{A}} &= \frac{1}{\mathcal{A}} \langle\uparrow|\psi\rangle \langle\psi|\uparrow\rangle_{\bar{\mathcal{A}}} + \frac{1}{\mathcal{A}} \langle\downarrow|\psi\rangle \langle\psi|\downarrow\rangle_{\bar{\mathcal{A}}}\\ &= \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix}\\ S_{A} &= -\operatorname{tr}\left(\rho_{A}\log\rho_{A}\right) = 0 \end{aligned}$$

• Entangled state

$$|\psi\rangle = \frac{1}{\sqrt{2}} \Big(\left|\uparrow\uparrow\rangle + \left|\downarrow\downarrow\rangle\right. \Big)$$

- 2-Qubit-system
 - Non-entangled state

$$\begin{aligned} |\psi\rangle &= |\uparrow\uparrow\rangle\\ \rho_{\mathcal{A}} &= \frac{1}{\mathcal{A}} \langle\uparrow|\psi\rangle \langle\psi|\uparrow\rangle_{\bar{\mathcal{A}}} + \frac{1}{\mathcal{A}} \langle\downarrow|\psi\rangle \langle\psi|\downarrow\rangle_{\bar{\mathcal{A}}}\\ &= \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix}\\ S_{A} &= -\operatorname{tr}\left(\rho_{A}\log\rho_{A}\right) = 0 \end{aligned}$$

• Entangled state

$$\begin{split} |\psi\rangle &= \frac{1}{\sqrt{2}} \bigg(\left|\uparrow\uparrow\rangle + \left|\downarrow\downarrow\rangle\right. \bigg) \\ \rho_A &= \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \\ S_A &= \log 2 \end{split}$$

• Lattice spacing:

 $a \rightarrow 0$

Hilbertspace:

• Lattice spacing:

 $a \rightarrow 0$

Hilbertspace:

• Lattice spacing:

 $a \rightarrow 0$

Hilbertspace:

• Lattice spacing:

 $a \rightarrow 0$

Hilbertspace:

 $\mathsf{discrete} \to \mathsf{non-compact}$

• Factorization $\mathcal{H} = \mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\bar{\mathcal{A}}}$

• Lattice spacing:

 $a \rightarrow 0$

Hilbertspace:

- Factorization $\mathcal{H} = \mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\bar{\mathcal{A}}}$
- Cut links & Gauge Invariance

• Lattice spacing:

 $a \rightarrow 0$

Hilbertspace:

- Factorization $\mathcal{H} = \mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\bar{\mathcal{A}}}$
- Out links *I* Gauge Invariance
 ⇒ Cut along link

• Lattice spacing:

 $a \rightarrow 0$

Hilbertspace:

- Factorization $\mathcal{H}=\mathcal{H}_{\mathcal{A}}\otimes\mathcal{H}_{\bar{\mathcal{A}}}$
- Out links *I* Gauge Invariance
 ⇒ Cut along link
- $\bullet \ {\rm UV} \ {\rm limit} \ a \to 0$

$$S_{\mathsf{EE}} = \frac{\mathsf{Area}\left(\partial\mathcal{A}\right)}{a_{UV}^{d-2}} + \dots$$

👧 Relevance of entanglement entropy

- Quantum information theory (related entanglement measures)
- Universal order parameter for quantum phase transitions
- Holography: simple prescription via minimal surfaces
- Black hole entropy conjectured to be EE across horizon
- Experimentally measured [Islam, Ma, Preiss, Tai, Lukin, Rispoli, Greiner '15]

• . . .

3 Holographic Entanglement Entropy

Entanglement entropy on the lattice

Holographic principle

Holography

Quantum Gravity on $AdS_{d+1} \times \mathcal{M} \iff \mathsf{CFT}$ on $\mathbb{R} \times \mathbb{S}^{d-1}$

- Several examples
- Strong evidence in classical limit
- Some evidence beyond
• Holographic Entanglement Entropy

🕕 Holographic Entanglement Entropy

- Passes many test [Ryu, Takayanagi '06, ...]
- Derived from existing AdS/CFT dictionary [Lewkowycz, Maldacena '13]
- Generalises to Rényi entropies [Dong '16]

Ryu-Takayanagi using a confining background [Klebanov, Kutasov, Murugan '07]

bulk

🗣 HEE in confining background

🗣 HEE in confining background

Ryu-Takayanagi using a confining background [Klebanov, Kutasov, Murugan '07]

 $l \ll l_{\rm crit.}$

🗣 HEE in confining background

Ryu-Takayanagi using a confining background [Klebanov, Kutasov, Murugan '07]

Holographic Entanglement Entropy

•
$$l \gg l_{crit.} \rightarrow \text{color-neutral states} \rightarrow S_{\text{EE}} \sim N_c^0$$
, $\partial_l S_{\text{EE}} = 0$
• $l \ll l_{crit.} \rightarrow \text{free gluons} \rightarrow S_{\text{EE}} \sim N_c^2$

GR Entropic C-function

• UV divergence for d = 4

$$S_{\mathsf{EE}}(l) = \frac{\mathsf{Area}\left(\partial\mathcal{A}\right)}{a_{UV}^2} + \frac{C}{l^2} + \dots$$

GR Entropic C-function

• UV divergence for d = 4

$$S_{\mathsf{EE}}(l) = \frac{\mathsf{Area}\left(\partial \mathcal{A}\right)}{a_{UV}^2} + \frac{C}{l^2} + \dots$$

• UV finite observable [Nishioka, Takayanagi '06]

$$C(l) = \frac{l^3}{|\partial \mathcal{A}|} \frac{\partial}{\partial l} S_{\mathsf{EE}}(l)$$

Entropic C-function

• UV divergence for d=4

$$S_{\mathsf{EE}}(l) = \frac{\mathsf{Area}\left(\partial\mathcal{A}\right)}{a_{UV}^2} + \frac{C}{l^2} + \dots$$

• UV finite observable [Nishioka, Takayanagi '06]

$$C(l) = \frac{l^3}{|\partial \mathcal{A}|} \frac{\partial}{\partial l} S_{\mathsf{EE}}(l)$$

- Dimensionless
- Decreases for increasing l [Zamolodchikov '86]
- AdS/CFT: C(l) jumps at $l = l_{crit.}$

[Klebanov, Kutasov, Murugan '07]

[Nishioka, Ryu, Takayanagi '09]

- Holographic Entanglement Entropy

Intanglement entropy on the lattice

Lattice results

- Relation of EE to free energies / path integral [Calabrese, Cardy, '04, '05]
- Prescription for free energy measurements [Fodor '07; Endrödi, Fodor, Katz, Szabo '07]
- Pure SU(2) Yang-Mills [Buividovich, Polikarpov '08]
- Pure SU(3) Yang-Mills [Itou, Nagata, Nakagawa, Nakamura, Zakharov '15]

Lattice results

- Relation of EE to free energies / path integral [Calabrese, Cardy, '04, '05]
- Prescription for free energy measurements [Fodor '07; Endrödi, Fodor, Katz, Szabo '07]
- Pure SU(2) Yang-Mills [Buividovich, Polikarpov '08]
- Pure SU(3) Yang-Mills [Itou, Nagata, Nakagawa, Nakamura, Zakharov '15]
- Pure SU(3) Yang-Mills (more statistics) [This work]
- Pure SU(4) Yang-Mills [This work]

Calculation of Entanglement entropy on the lattice

Entanglement entropy

$$S_{\mathsf{EE}} = \lim_{q \to 1} S^{(q)} = \lim_{q \to 1} \frac{1}{q-1} \log\left(\operatorname{tr}_A(\rho_A^q)\right) \approx S^{(2)}$$

Calculation of Entanglement entropy on the lattice

Entanglement entropy

$$S_{\mathsf{EE}} = \lim_{q \to 1} S^{(q)} = \lim_{q \to 1} \frac{1}{q-1} \log\left(\operatorname{tr}_A(\rho_A^q)\right) \approx S^{(2)}$$

 \Rightarrow Need powers of reduced density matrix

Entanglement entropy

$$S_{\mathsf{EE}} = \lim_{q \to 1} S^{(q)} = \lim_{q \to 1} \frac{1}{q-1} \log\left(\operatorname{tr}_A(\rho_A^q)\right) \approx S^{(2)}$$

 \Rightarrow Need powers of reduced density matrix

Density matrix $\hat{\rho}$

$$\left\langle \psi_{1}\right| \hat{\rho} \left| \psi_{2} \right\rangle = \frac{1}{Z} \left\langle \psi_{1}\right| e^{-\beta \hat{H}} \left| \psi_{2} \right\rangle$$

$$\langle \psi_1 | \operatorname{tr}_{\bar{\mathcal{A}}} \hat{\rho} | \psi_2 \rangle = \frac{1}{Z} \langle \psi_1 | \operatorname{tr}_{\bar{\mathcal{A}}} e^{-\beta \hat{H}} | \psi_2 \rangle$$

$$\langle \psi_1 | \operatorname{tr}_{\bar{\mathcal{A}}} \hat{\rho} | \psi_2 \rangle = \frac{1}{Z} \langle \psi_1 | \operatorname{tr}_{\bar{\mathcal{A}}} e^{-\beta \hat{H}} | \psi_2 \rangle$$

$$\left\langle \psi_{1}\right| \operatorname{tr}_{\bar{\mathcal{A}}} \hat{\rho} \left| \psi_{2} \right\rangle = \frac{1}{Z} \left\langle \psi_{1}\right| \operatorname{tr}_{\bar{\mathcal{A}}} e^{-\beta \hat{H}} \left| \psi_{2} \right\rangle$$

$$\langle \psi_1 | \operatorname{tr}_{\bar{\mathcal{A}}} \hat{\rho} | \psi_2 \rangle = \frac{1}{Z} \langle \psi_1 | \operatorname{tr}_{\bar{\mathcal{A}}} e^{-\beta \hat{H}} | \psi_2 \rangle$$

partial trace = lattice deformation

 $\langle \psi_1 | (\operatorname{tr}_{\bar{\mathcal{A}}} \hat{\rho})^2 | \psi_2 \rangle$

$$\langle \psi_1 | (\operatorname{tr}_{\bar{\mathcal{A}}} \hat{\rho})^2 | \psi_2 \rangle = \sum_{|\psi\rangle} \langle \psi_1 | \operatorname{tr}_{\bar{\mathcal{A}}} \hat{\rho} | \psi \rangle \langle \psi | \operatorname{tr}_{\bar{\mathcal{A}}} \hat{\rho} | \psi_2 \rangle$$

$$\langle \psi_1 | \left(\operatorname{tr}_{\bar{\mathcal{A}}} \hat{\rho} \right)^2 | \psi_2 \rangle = \sum_{|\psi\rangle} \langle \psi_1 | \operatorname{tr}_{\bar{\mathcal{A}}} \hat{\rho} | \psi \rangle \langle \psi | \operatorname{tr}_{\bar{\mathcal{A}}} \hat{\rho} | \psi_2 \rangle$$

$$\langle \psi_1 | \left(\operatorname{tr}_{\bar{\mathcal{A}}} \hat{\rho} \right)^2 | \psi_2 \rangle = \sum_{|\psi\rangle} \langle \psi_1 | \operatorname{tr}_{\bar{\mathcal{A}}} \hat{\rho} | \psi \rangle \langle \psi | \operatorname{tr}_{\bar{\mathcal{A}}} \hat{\rho} | \psi_2 \rangle$$

OR Rényi entropy

Generalization to arbitrary powers

$$\operatorname{tr}_{\mathcal{A}}(\hat{\rho}_{\mathcal{A}}^{q}) = \frac{Z[\mathcal{A}, q, T]}{Z^{q}[T]}$$

Rényi entropy

Generalization to arbitrary powers

Rényi entropy

Generalization to arbitrary powers

Rényi entropy

$$S^{(q)} = -\frac{1}{q-1}\log\left(\operatorname{tr}_{\mathcal{A}}\hat{\rho}^{q}_{\mathcal{A}}\right) = \frac{1}{q-1}\underbrace{F[\mathcal{A},q,T]}_{q-1 \text{ cuts}} - \frac{q}{q-1}\underbrace{F[T]}_{0 \text{ cuts}}$$

Entanglement entropy and entropic C function

Approximate Entanglement entropy by 2nd Rényi entropy

$$S_{\text{EE}} \approx S^{(2)} = F[A, 2, T] - 2F[T]$$

Entanglement entropy and entropic C function

Approximate Entanglement entropy by 2nd Rényi entropy

$$S_{\mathsf{EE}} \approx S^{(2)} = F[A, 2, T] - 2F[T]$$

$$\Rightarrow \qquad \frac{\partial}{\partial l} S_{EE}(l-a/2) \approx \frac{F[l-a,2,T] - F[l,2,T]}{a}$$
Entanglement entropy and entropic C function

Approximate Entanglement entropy by 2nd Rényi entropy

$$S_{\mathsf{EE}} \approx S^{(2)} = F[A, 2, T] - 2F[T]$$

$$\Rightarrow \qquad \frac{\partial}{\partial l} S_{EE}(l-a/2) \approx \frac{F[l-a,2,T] - F[l,2,T]}{a}$$

 \Rightarrow Have to calculate difference of free energies on the lattice

G Calculating differences of free energy on the lattice

Difference of free energies F_1 and F_2

$$F_2 - F_1 = -\log Z_2 + \log Z_1$$

G Calculating differences of free energy on the lattice

Difference of free energies F_1 and F_2

$$F_2 - F_1 = -\log Z_2 + \log Z_1 = -\int_0^1 d\alpha \frac{\partial}{\partial \alpha} \log Z(\alpha)$$

Calculating differences of free energy on the lattice

Difference of free energies F_1 and F_2

$$F_2 - F_1 = -\log Z_2 + \log Z_1 = -\int_0^1 d\alpha \frac{\partial}{\partial \alpha} \log Z(\alpha)$$

with

$$Z(0) = Z_1 \qquad Z(1) = Z_2$$
$$Z(\alpha) = \int D\phi \exp\left(-(1-\alpha)S_1[\phi] - \alpha S_2[\phi]\right)$$

Calculating differences of free energy on the lattice

Difference of free energies F_1 and F_2

$$F_2 - F_1 = -\log Z_2 + \log Z_1 = -\int_0^1 d\alpha \frac{\partial}{\partial \alpha} \log Z(\alpha)$$

with

$$Z(0) = Z_1 \qquad Z(1) = Z_2$$
$$Z(\alpha) = \int D\phi \exp\left(-(1-\alpha)S_1[\phi] - \alpha S_2[\phi]\right)$$
$$\Rightarrow \qquad F_2 - F_1 = \int_0^1 d\alpha \left\langle S_2[\phi] - S_1[\phi] \right\rangle_\alpha$$

Calculating differences of free energy on the lattice

Difference of free energies F_1 and F_2

$$F_2 - F_1 = -\log Z_2 + \log Z_1 = -\int_0^1 d\alpha \frac{\partial}{\partial \alpha} \log Z(\alpha)$$

with

$$Z(0) = Z_1 \qquad Z(1) = Z_2$$
$$Z(\alpha) = \int D\phi \exp\left(-(1-\alpha)S_1[\phi] - \alpha S_2[\phi]\right)$$
$$\Rightarrow \qquad F_2 - F_1 = \int_0^1 d\alpha \left\langle S_2[\phi] - S_1[\phi] \right\rangle_\alpha$$

Entropic C function:

$$C(l - a/2) = \frac{(l - a/2)^3}{L^2} \int_0^1 d\alpha \, \langle S_{l+1} - S_l \rangle_{\alpha}$$

Or Simulation plan

$$C(l - a/2) = \frac{(l - a/2)^3}{L^2} \int_0^1 d\alpha \left< S_{l+1} - S_l \right>_{\alpha}$$

Simulation plan

Generate configurations with interpolating action

$$S_{\text{int}} = (1 - \alpha)S_l[U] + \alpha S_{l+1}[U]$$

with $S_l[U]$ and $S_{l+1}[U]$ action on deformed geometry.

Simulation plan

• Generate configurations with interpolating action

$$S_{\text{int}} = (1 - \alpha)S_l[U] + \alpha S_{l+1}[U]$$

with $S_{l}[\boldsymbol{U}]$ and $S_{l+1}[\boldsymbol{U}]$ action on deformed geometry.

• Measure $S_{l+1} - S_l$ and generate bootstrap samples

Simulation plan

Generate configurations with interpolating action

$$S_{\text{int}} = (1 - \alpha)S_l[U] + \alpha S_{l+1}[U]$$

with $S_l[U]$ and $S_{l+1}[U]$ action on deformed geometry.

- Measure $S_{l+1} S_l$ and generate bootstrap samples
- Integrate over α using cubic spline interpolation

• Use standard Wilson action

$$S[U] = \frac{\beta}{N_c} \sum_{U_{\mu\nu}} \operatorname{Re} \operatorname{tr} \left(1 - U_{\mu\nu} \right)$$

• Use standard Wilson action

$$S[U] = \frac{\beta}{N_c} \sum_{U_{\mu\nu}} \operatorname{Re} \operatorname{tr} \left(1 - U_{\mu\nu} \right)$$

• Be careful closing plaquettes

• Use standard Wilson action

$$S[U] = \frac{\beta}{N_c} \sum_{U_{\mu\nu}} \operatorname{Re} \, \operatorname{tr} \left(1 - U_{\mu\nu} \right)$$

- Be careful closing plaquettes
- Use pseudo-heatbath to update configurations

• Use standard Wilson action

$$S[U] = \frac{\beta}{N_c} \sum_{U_{\mu\nu}} \operatorname{Re} \, \operatorname{tr} \left(1 - U_{\mu\nu} \right)$$

- Be careful closing plaquettes
- Use pseudo-heatbath to update configurations
- Perform 100 sweeps to avoid autocorrelation
- Reunitarize link variables
- Use lattice of size $16^3 \times (2 \times 16)$

Simulation Parameters

- Need to compare different spacings \rightarrow string tension $\sqrt{\sigma}$ [Lucini, Teper, Wenger '05]
- Take shorter cut \rightarrow "lower temperature"
- High statistics required, more than 300,000 configs

Configurations SU(3)

Configurations	SU	(4)

β/l	2	3	4	5	6	7	β/l	2	3	4	5	6	7
5.700	44, 976	44,976	130,656	253,056	218, 328	[230, 568]	11.000	24, 480	70,560	93,600	93,600	69, 120	184, 320
5.720			34,728				11.004						57,600
5.740			34,728				11.008						30,744
5.750	34,728	34,728	34,728	120,408	208,080	134,640	11.058		26,650				
5.770			34,728				11.075					160, 221	115,200
5.780			34,728				11.100				253,440	253, 440	253, 440
5.800	34,728	34,728	34,728	120,408	255,048	134,640	11.112					30,744	
							11.156						57,600
							11.192				33,961		
							11.200		103,680	103,680	149,760	357, 120	357, 120
							11.300		11,520	11,520	126,720	126,720	264,960
							11.398			31.704			

• EE calculatable using holography and on lattice

• EE calculatable using holography and on lattice

• AdS/CFT jump in $C(l) \longrightarrow {\rm smooth\ transition\ for\ } N_c \ll \infty$

• EE calculatable using holography and on lattice

 $\bullet~{\rm AdS}/{\rm CFT}$ jump in C(l) \longrightarrow smooth transition for $N_c\ll\infty$

• Higher Rényi entropies possible

• EE calculatable using holography and on lattice

 $\bullet~{\rm AdS}/{\rm CFT}$ jump in C(l) \longrightarrow smooth transition for $N_c\ll\infty$

- Higher Rényi entropies possible
- Continuum limit?!

• EE calculatable using holography and on lattice

 $\bullet~{\rm AdS}/{\rm CFT}$ jump in C(l) \longrightarrow smooth transition for $N_c\ll\infty$

- Higher Rényi entropies possible
- Continuum limit?!
- Larger N_c ?!

• EE calculatable using holography and on lattice

 $\bullet~{\rm AdS}/{\rm CFT}$ jump in C(l) \longrightarrow smooth transition for $N_c\ll\infty$

- Higher Rényi entropies possible
- Continuum limit?!
- Larger N_c ?!

Thank you for your attention

29