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Loop Quantum Gravity (LQG) claims to be a quantization of GR.
Is this true?

In other words: what is the classical limit of LQG?

Answering this question in general is very hard. For this, I will
consider some examples, in particular cosmology and black holes.
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GR – from continuum metric form to holonomy-flux lattice form

M −→ Σ −→ γ

gµν(s, x) −→ (AI
a(x),E a

I (x)) −→ (h(e),P I (e))

Gµν(g , ∂g , ∂2g) −→ H(A,E ) −→ Hreg (h,P)

Note: γ is a collection of edges, {e1, .., en}, and for each e we have
h(e) ∈ SU(2) and P I (e)τI ∈ su(2).



LQG (on fixed γ):

I Hilbert space: Hγ = L2(SU(2), dµ)⊗n

I state in Hγ : Ψ(g1, .., gn) with ge ∈ SU(2)

I elementary operators (on each e): ĥ(e) and P̂ I (e) given by

ĥ(e)Ψ(g1, .., gn) = geΨ(g1, .., gn)

and

P̂ I (e)Ψ(g1, .., gn) =
d

dε
Ψ(g1, ..e

ετI ge , .., gn)

∣∣∣∣
ε=0

= (R I
eΨ)(g1, .., gn)

Other classical functions f (A,E ) are promoted to operators by:

1. regularization: f (A,E ) −→ freg (h,P)

2. quantization: freg (h,P) −→ freg (ĥ, P̂)



example: volume operator

Classical, continuum volume of Σ:

V =

∫
Σ
d3x

√
det q(x) =

∫
Σ
d3x

√
εabcεIJKE

a
I (x)Eb

J (x)E c
K (x)

where qab is the spatial part of gµν .

After so-called “internal regularization”, we get [Ashtekar, Lewandowski 1997]

Vreg ∝
∑

x

√
|Qx |

where

Qx =
∑

e,e′,e′′∈x

ε(e, e ′, e ′′)εIJKP
I (e)PJ(e ′)PK (e ′′)

Quantization is now straightforward: replace each P with P̂.



example: Hamiltonian operator

Given classical continuum GR Hamiltonian, H(A,E ), Thiemann
regularization leads to Hreg (h,P). Its quantization reads [Thiemann 1998]

Ĥ =
∑

x

[
ĤE (x)− (1 + β2)ĤL(x)

]
where

ĤE (x) ∝
∑

e,e′,e′′∈x

ε(e, e ′, e ′′)Tr
[(

ĥ(�ee′)− ĥ(�ee′)†
)
ĥ(e ′′)†[ĥ(e ′′), V̂ ]

]
and

ĤL(x) ∝
∑

e,e′,e′′∈x

ε(e, e ′, e ′′)Tr
[
K̂ (e)K̂ (e ′)ĥ(e ′′)†[ĥ(e ′′), V̂ ]

]
with

K̂ (e) ∝ ĥ(e)†[ĥ(e), [ĤE (v), V̂ ]]



dynamics

Once we have Ĥ, quantum evolution on Hγ is given by

Ψ(s) = e−i ĤsΨ(0)

Physically meaningful question: how does volume change in time?
Answer:

〈Ψ(0)|e i Ĥs V̂ e−i Ĥs |Ψ(0)〉

However... Ĥ is too complicated to explicitely find its spectrum.

Not so surprising: knowing it would be the quantum equivalent of
knowing all solutions to Einstein’s equation! What to do?
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Fix γ. Consider a family of states in Hγ :

Ψ(g1, .., gn) = ψS1(g1)..ψSn (gn)

where for each edge we have

ψSe (ge) :=
1

N
a(ge)e−Se (ge )/t

and Se has two properties:

I Re(Se) has a single minimum, denoted ue

I the Hessian of Se at ge = ue is non-degenerate

Then, it follows

〈Ψ|ĥ(e)|Ψ〉 = ue+O(t), 〈Ψ|P̂ I (e)|Ψ〉 =
1

t

[
(R I Im(Se))(ue) +O(t)

]
and relative dispersions are

∆ĥ/〈ĥ〉 = O(t), ∆P̂ I/〈P̂ I 〉 = O(t)

An example of such Ψ are the famous complexifier coherent states.



Thus, Ψ is labelled by ue ∈ SU(2) and ξe := τIR
I Im(Se) ∈ su(2):

Ψ(u1,..,un;ξ1,..,ξn)(g1, .., gn) is peaked on h(e) = ue ,P
I (e) = ξI

e

But (h(e),P I (e)) is 1-to-1 to a discrete geometry on Σ.

Result: State Ψ(u;ξ) encodes a discrete 3-geometry.

Questions: How does this state evolve? Does it remain peaked?

To answer, we should compute e−i ĤsΨ(u,ξ), but it is too hard!



Claim (not yet proven): The state we constructed satisfies

e−i ĤsΨ(u;ξ) = Ψ(u(s);ξ(s)) +O(t)

where s-dependence of ue and ξe is given by Hamilton’s equations

d

ds
ue = {ue ,Heff (u, ξ)}, d

ds
ξe = {ξe ,Heff (u, ξ)}

with effective Hamiltonian given by

Heff (u, ξ) := 〈Ψ(u;ξ)|Ĥ|Ψ(u;ξ)〉

If the claim is true, then it means that for the leading order in
semiclassicality parameter t we only need to compute Heff !
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Metric on M: gµν = diag(−1, a2, a2, a2).

I Ashtekar variables on Σ: (AI
a = cδI

a,E
a
I = pδa

I ), where p = a2

and c is conjugated

I choice of graph γ: cubic lattice adapted to coord’s

I reading off the discrete data (u1, ..un; ξ1, .., ξn): compute
holonomies and fluxes of (AI

a,E
a
I ) along the edges of γ:

ue
!

= h(ea) = ecµτa/2, ξI
e

!
= P I (ea) = δI

aµ
2p

I this data is sufficient to construct Ψ(u1,..,un;ξ1,..,ξn).

We call Ψ(c,p) := Ψ(u1,..,un;ξ1,..,ξn) a cosmological state in LQG
[Liegener, AD 2017].



Computation of expectation value of Ĥ on cosmological states:

Hcosmo
eff (c , p) = 〈Ψ(c,p)|Ĥ|Ψ(c,p)〉 =

= − 3

κβ2

√
p

sin2(µc)

µ2

[
1− (1 + β2) sin2(µc)

]
+O(t)

Compare with the classical Hamiltonian of cosmology:

Hcosmo
class (c , p) = − 3

κβ2

√
pc2

Remarks:

I Hcosmo
eff

µ→0−→ Hcosmo
class , so we recover the continuum limit.

I Hcosmo
LQC 6= Hcosmo

eff : the “holonomy correction” is not enough.



It is easy to (numerically) integrate Hamilton’s equations.

Evolution of volume V = p3/2:
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(blue = Hcosmo
eff , gold = Hcosmo

class )



Remarks:

I Big Bang singularity replaced by a non-symmetric bounce

I late universe coincides with classical cosmology

I pre-bounce universe is an exponentially contracting spacetime

I the behavior in the contracting branch appears in classical
comsmology in presence of a cosmological constant

Λ =
3

µ2(1 + β2)2

I natural choice of vacuum for perturbations [Agullo 2018]

I a modified LQC Hamiltonian operator can be found that
reproduces this behavior [Assanioussi, AD, Liegener, Pawlowski 2018]
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example: Bianchi I

Metric on M: gµν = diag(−1, a2
1, a

2
2, a

2
3).

I Ashtekar variables on Σ: (AI
a = caδ

I
a,E

a
I = paδ

a
I )

I choice of graph γ: same as for cosmology

I reading off the discrete data (u1, ..un; ξ1, .., ξn):

ue
!

= h(ea) = ecaµτa/2, ξI
e

!
= P I (ea) = δI

aµ
2pa

I this data is sufficient to construct Ψ(ca,pa) := Ψ(u1,..,un;ξ1,..,ξn).

Expectation value of Ĥ gives

ĤBI
eff = − 1

κβ2

√
p1p2p3

sin(c1µ) sin(c2µ)

µ2

(
1− (1 + β2)Γ123

)
+ cyclic

where Γijk = 1− cos(ciµ)+cos(ckµ)
2

cos(cjµ)+cos(ckµ)
2 .

Observations: ĤBI
eff

µ→0−→ HBI
class but ĤBI

eff 6= HBI
LQC .



example: the simplest black hole

In spherical coords:

gµνdx
µdxν = −

(
1− 2M

r

)
ds2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2

We are interested in the BH interior, r < 2M: there, r is time, so

gµνdx
µdxν = −

(
2M

r
− 1

)−1

dr2 +

(
2M

r
− 1

)
ds2 + r2dΩ2

Change coords: r → T such that dT 2 =
(

2M
r − 1

)−1
dr2:

gµνdx
µdxν = −dT 2 + f (T )2ds2 + g(T )2dΩ2

We consider a metric of this form with general f (T ) and g(T ).



example: the simplest black hole

In terms of Ashtekar variables AI
a and E a

I , we have

A1
1 = −βa, A2

2 = −βb, A3
3 = −βb sin θ, A1

3 = cos θ

and
E 1

1 = pa sin θ, E 2
2 =

pb

2
sin θ, E 3

3 =
pb

2

where pa = g2, pb = 2fg and a and b are conjugated to them.

Much less trivial than other examples, since:

I A not diagonal

I both A and E depend on the point (i.e., its coordinate θ)

Moreover, we must change our choice of graph γ!



example: the simplest black hole

Numerical integration reveals BH → WH transition.

The boundary of the evolution is the WH horizon of mass

m(M) = M
1
3

200000 400000 600000 800000 1×10
6
M

20

40

60

80

m

Different from [Ashtekar, Olmedo, Singh 2018], where a linear relation is found.
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summary
Results:

I Proposal for quantum gravity Hamiltonian Ĥ on the lattice γ

I Proposal for states Ψ(u;ξ) ∈ Hγ representing discrete

3-geometries (h(e),P I (e)) = (ue , ξ
I
e)

I Theorem (to be shown): to leading order

e−i ĤsΨ(u;ξ) = Ψ(u(s);ξ(s))

with evolution of labels generated by

Heff (u, ξ) = 〈Ψ(u;ξ)|Ĥ|Ψ(u;ξ)〉

I Several examples:

∗ Cosmology
∗ Bianchi I
∗ Schwartzschild-like black holes



summary

Open questions:

I What is role of lattice γ? Would γ′ 6= γ change the result?

I What is role of discreteness scale µ?
If it is physical, then we have important implications:

I Big Bang replaced by bounce
I Schwartzschild singularity replaced by a transition to white hole

On the other hand, the limit µ→ 0 reproduces continuum
GR.

I More examples to be studied:
I k 6= 0 cosmologies
I “real” black holes (spherical collapse)
I gravitational waves
I ...other ideas?



GRAZIE!
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