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Introduction



Loop Quantum Gravity (LQG) claims to be a quantization of GR.
Is this true?

In other words: what is the classical limit of LQG?

Answering this question in general is very hard. For this, | will
consider some examples, in particular cosmology and black holes.
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review of LQG



GR — from continuum metric form to holonomy-flux lattice form

M — ) — ¥
8uv(s,X) — (ALX), Ef(x)) — (h(e), P'(e))
G (g, 08, 0’g) — H(A, E) —  Hieg(h, P)

Note: v is a collection of edges, {ei, .., e,}, and for each e we have
h(e) € SU(2) and P!(e)7; € su(2).



LQG (on fixed ~):
» Hilbert space: H, = Lo(SU(2), dp)®"
» state in H: V(gi,..,8n) with g. € SU(2)
» elementary operators (on each e): h(e) and P’(e) given by
h(e)W(g1, ., gn) = ge V(g1 -, &n)

and

~ d €T
Pl(e)w(gla“agn) - E‘U(gb“e ’gea"agn) - (Ré\u)(g177gn)
e=0

Other classical functions f(A, E) are promoted to operators by:
1. regularization: f(A, E) — feg(h, P)
2. quantization: freg(h, P) — freg(h, P)



example: volume operator

Classical, continuum volume of X:

V:/zd3xx/detq(x):/zd3x\/eabCeUKEf(x)Ej’(x)Ef((x)

where q,p, is the spatial part of g,

After so-called “internal regularization”, we get [ashtekar, Lewandowski 1997]
Vreg X E V ‘QX|
X

where

Q= > ele €, )euxP'(e)P!(e')PK(e")

e, e’ e’ ex

Quantization is now straightforward: replace each P with p.



example: Hamiltonian operator

Given classical continuum GR Hamiltonian, H(A, E), Thiemann
regularization leads to Hyeg(h, P). Its quantization reads [Thiemann 1998]

Fi=3" [Aeta) - (1 + B0

where
Fe(x)oc 3 eleese)Tr | (A(Dee) = h(Dee)') e Th(E"), V1]

e,e’e’ex

and



dynamics

Once we have A, quantum evolution on H, is given by
U(s) = e How(0)

Physically meaningful question: how does volume change in time?
Answer: . .
(W(0)|e™* Ve~ w(0))

However... H is too complicated to explicitely find its spectrum.

Not so surprising: knowing it would be the quantum equivalent of
knowing all solutions to Einstein's equation! What to do?
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semiclassical states in LQG



Fix . Consider a family of states in H,:

\U(gl, -->gn) = 77Z151 (gl)"djsn(gn)

where for each edge we have

wse(ge) = %a(ge)e_se(ge)/t

and S. has two properties:
» Re(S.) has a single minimum, denoted w,
» the Hessian of S, at g = ue is non-degenerate

Then, it follows
(VIh(E)IY) = utO(1), (VIR ()W) = T [(RNIm(S.))(ue) + ()]
and relative dispersions are

ah/(hy=0(),  AP!/(Py = O(r)

An example of such W are the famous complexifier coherent states.



Thus, W is labelled by ve € SU(2) and & := 7/R'Im(S.) € su(2):
W(U1,..,un;§1,..,§n)(g1a ..y &n) is peaked on h(e) = ue, Pl(e) = §é

But (h(e), P'(e)) is 1-to-1 to a discrete geometry on ¥.
Result: State W(,.¢) encodes a discrete 3-geometry.
Questions: How does this state evolve? Does it remain peaked?

To answer, we should compute e_"HS\U(u,E), but it is too hard!



Claim (not yet proven): The state we constructed satisfies
—iFH
e W (ug) = Viu(spg(s)) +O(1)

where s-dependence of ue and &, is given by Hamilton's equations

d

d
ol = {ue, Hepr (u, &)}, E{e = {&e, Her(u,§)}

with effective Hamiltonian given by
Hetr (1, €) = (Y(ue) | IV (uie))

If the claim is true, then it means that for the leading order in
semiclassicality parameter t we only need to compute H.f!
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example: cosmology



Metric on M: g, = diag(—1, 2%, a°, a°).
» Ashtekar variables on : (Al = cd!, Ef = pd?), where p = a°
and c is conjugated
» choice of graph ~: cubic lattice adapted to coord’s

» reading off the discrete data (u1,..un; &1, ..,&n): compute
holonomies and fluxes of (AL, E7) along the edges of v:

Ue < h(e;) = eCHTal2, gé = Pl(ea) = 5£u2p

» this data is sufficient to construct W, ¢ ¢,

We call W o) := VY,  u.e,.¢,) @ cosmological state in LQG

[Liegener, AD 2017].



Computation of expectation value of H on cosmological states:

cosmo

eff (C7p):< Cp)’H‘w >

_ Hﬁz\fs'”( ) 11— (14 82) sin?(uc)] + O(t)

Compare with the classical Hamiltonian of cosmology:

3 2
Eo(c.p) = — /P
Remarks:

o 0

cosm cosmo A N H
» HZE — HZ227°, so we recover the continuum limit.

HIGE® # Heg™e: the “holonomy correction” is not enough.



It is easy to (numerically) integrate Hamilton's equations.

Evolution of volume V = p3/2;

\
5000 -

L
-40 -20

__ JJcosmo __ pgcosmo
(blue_ eff 'gOId_ class)



Remarks:

>

>

>

Big Bang singularity replaced by a non-symmetric bounce
late universe coincides with classical cosmology
pre-bounce universe is an exponentially contracting spacetime

the behavior in the contracting branch appears in classical
comsmology in presence of a cosmological constant

3
N=— 2)2
p?(1+ B?)
natural choice of vacuum for perturbations [agulio 2018]

a modified LQC Hamiltonian operator can be found that
reprod uces this behavior [Assanioussi, AD, Liegener, Pawlowski 2018]
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other examples



example: Bianchi |
Metric on M: g, = diag(—1, a$, a3, a3).
» Ashtekar variables on ¥: (Al = c,0!, Ef = p,67)
» choice of graph ~: same as for cosmology
» reading off the discrete data (u1,..un; &1, .., &n):

! Ta L
Ue = h(ea) = et /27 é = Pl(ea) 5IM Pa

> this data is sufficient to construct W, 5.) = V(u,, uniér,..60):

Expectation value of gives

Sln C Sln C .
Heff \/W ( Lui ( 2'u) (1 — (1 + 52)F123) + cyclic

o cos(c;pt)+cos(cy ) cos(cjp)-+cos(cy )
where [ =1 — 5 5 .

.. Bl 0 By
Observations: H o — Hines

but ABL # HE.



example: the simplest black hole

In spherical coords:

2M VAN
b <1 — r> ds® + (1 — r) dr?® + r?dQ?

We are interested in the BH interior, r < 2M: there, r is time, so

2M -1 2M
gudxtdx” = — <r = 1) dr® + (r — 1> ds® + r’dQ?

Change coords: r — T such that dT72 = (24 — 1)_1 dr?:

gudxtdx” = —dT? + f(T)?ds® + g(T)?dQ?

We consider a metric of this form with general f(T) and g(T).



example: the simplest black hole

In terms of Ashtekar variables A"9 and E/, we have
Al =_Ba, A3=-pBb, A3=—pbsing, Al=cos

and
El = pysing, E2="bsing, E3=P°
2 2
where p, = g2, pp = 2fg and a and b are conjugated to them.
Much less trivial than other examples, since:
» A not diagonal
» both A and E depend on the point (i.e., its coordinate )

Moreover, we must change our choice of graph ~!



example: the simplest black hole

Numerical integration reveals BH — WH transition.

The boundary of the evolution is the WH horizon of mass

m(M) = M3

.
o,

200000 400000 600000 800000

Different from [ashtekar, Oimedo, singh 2018], Where a linear relation is found.
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summary

Results:
» Proposal for quantum gravity Hamiltonian H on the lattice ~

» Proposal for states W(,.cy € H,, representing discrete
3-geometries (h(e), P'(e)) = (ue, &)

» Theorem (to be shown): to leading order

—iH
e "V (e) = Viu(s)e(s))
with evolution of labels generated by

Heff(u> 5) = <W(u§) | H‘W(U§)>

» Several examples:

x Cosmology
* Bianchi |
* Schwartzschild-like black holes



summary

Open questions:
» What is role of lattice v? Would 7/ # ~ change the result?

» What is role of discreteness scale u?
If it is physical, then we have important implications:
» Big Bang replaced by bounce
» Schwartzschild singularity replaced by a transition to white hole

On the other hand, the limit © — 0 reproduces continuum
GR.

> More examples to be studied:
» k # 0 cosmologies
“real” black holes (spherical collapse)
gravitational waves
...other ideas?

v vyy
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