
1) Kinstic theory us. hydrodynamics
Complementary: hydrodynamics +> macroscopic
$T(x), \mu_b(x), \iota^m(x)$
(derived quantities.
$Q(x), n_{b}(x), p(x)$
Eos: p=p(e,nb)=p(t,n
kinetic theory (> micros copic: f(x,p)
f(xm,pm): classical kinetic theory: P(E,p)~ S(E2-E2)
$f(x^{\mu},p^{\mu})$: classical kinetic theory: $g(E,\vec{p}) \sim S(E^2-E_p^2)$ $= \frac{1}{2E_p} (S(E-E_p) + S(E+E_p))$
Ep= \p'+m2'
-> on-shell particles, f(x, p,t), E=Ep
Quantum Rinetic Hearn. (ata)
grantum kinetic theory: $(q \neq 0)$ (i) weak coupling: $g(E, \vec{p}) \sim \frac{E^2 \Gamma(\vec{r})}{(E^2 - \vec{p})^2 + E^2 \Gamma(\vec{r})}$
(E ² -p) ² -m(T)) ² +E ² T
$m^2(\tau) = m^2 + \#(g\tau)^2$
$\Gamma(\tau) \sim g^2 \tau$ for $g \ll 1$
19=0 p fixed
2m E
Ep= \p2+n2 \p2+m2+# g2T2 = Ep(T)
f(x,p) -> W(x",p") Wigner function
(ii) strong coupling - no quasiparticles
structure less spectral function
no Boltemann-like description

m df = G (collision term) - m xm of + m jor of = G (ESM:mFM = q Fmv por Lorentz force) If no longrange forces (FM=0) pro f(x,p) = C(x,p) If system is dilute (f(x,x2,p,p2) & f(x,p1) f(x2,p2)) and weakly interacting (q KI, p(E,P) & 8 (E2- Ep(T))) => Boltzmann equation $[p.\partial f = c[f]]$ $C(x,p) = \frac{1}{2} \int \frac{d^3p}{d^3p} \frac{d^3p'}{d^3p'} \frac{d^3p'}{d^3p'} \frac{s(p+p,-p'-p')}{s(s,d)}$ x [f(x,p) f(x,p))(1 ± f(x,p))(1 ± f(x,p)) - f(x,p) f(x,p,) (1 ± f(x,p')) (1 ± f(x,p,1)) where 5=(p+p)2 = (p+p')2 and $cor\theta = (p-p_1) \cdot (p'-p_1')$ (scattering angle in em system

The collision tome vareishes in two limits:
(1) free streaming (g=0 => 0=0, ideal gas)
$\Rightarrow s. lution f(\vec{x}, \vec{p}; t) = f(\vec{x} - \vec{p}(t - t_0), \vec{p}; t_0)$
(2) extremely strong compling (g >0, 5 >0, ideal fluid)
$f(x,p) = \frac{(p \cdot u(x) - \mu(x))}{(p \cdot u(x) - \mu(x))} $ $= \frac{(p \cdot u(x) - \mu(x))}{(p \cdot u(x) - \mu(x))} $ $= \frac{(p \cdot u(x) - \mu(x))}{(p \cdot u(x) - \mu(x))} $ $= \frac{(p \cdot u(x) - \mu(x))}{(p \cdot u(x) - \mu(x))} $ $= \frac{(p \cdot u(x) - \mu(x))}{(p \cdot u(x) - \mu(x))} $ For the local equilibrium distribution feq $(p \cdot u(x) - \mu(x))$
For the local equilibrium distribution feq (p.u(x) u(x)) T(x), T(x)
T(x) , T(x)
the gain and loss terms cancel in the collision term
If the system expands and accelerates, $T(x)$ decreases and feq $(\frac{p \cdot u(x)}{T(x)}, \frac{u(x)}{T(x)})$ changes shape (steeper slope in
a log-plot: luf
light lowT > p.n
This requires particles to change their momenta (particles drift from higher to lower energies, on average)
drift from ligher to lower overgies, on average)
Even for g -> 00, this cannot happen instantancously (quantum mechanics!)
$\rightarrow f(x,p) = f_{eq}(x,p) + \delta f(x,p)$
For g -> 00 or small expansion rates -> &f small
For 3-30 or large expansion rates -> Sf large
Will show: $\delta f = 0$ - ideal fluid dynamics δf large: hydrodynamics δf large: theory. (3)

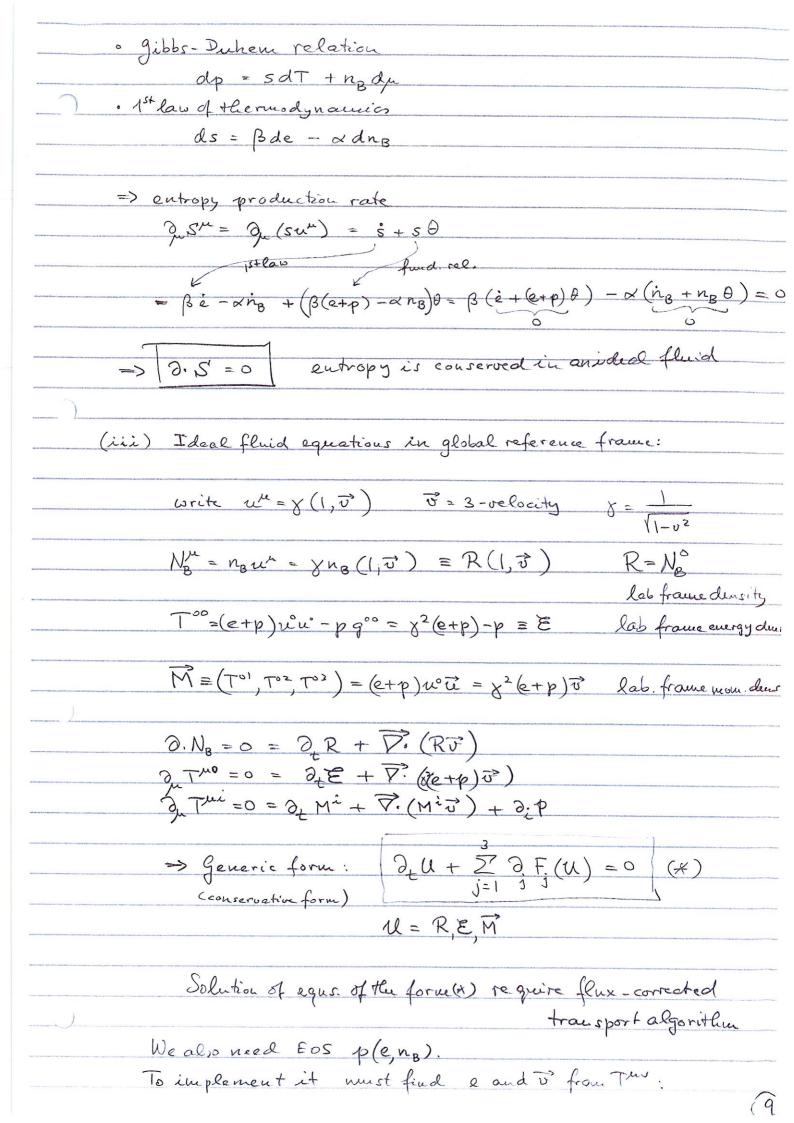
2) Ideal fluid dynamics f(x,p) = feq(x,p) = (neglect chem. potential enostly) un(x) = local fluid velocity -> un = (1,0) = un un =1. In ℓ .r.f. $f(\overline{x},\overline{p}) = \frac{1}{\ell^{p} \cdot \overline{x}/T + a} = \frac{1}{\ell^{p} \cdot \overline{x}/T$ Moment equations: Integrate Boltzmann equation $p^{t} \partial_{\mu} f(x,p) = C(x,p)$ with integration measure $dP = \frac{1}{(2\pi\hbar)^3} \frac{d^3p}{E_p} = 2\theta(p^0)\delta(p^2-m^2(\tau))\frac{d^4}{(2\pi\hbar)^3}$ Write gro = (gro- www) + www = www + And timelike projector spacelike in lef projectoriulerf p2 = prp = purup + pubrp, = (p.u)2 + p. A.p $=\overline{E}^2-\overline{p}^2$ $d^4p = d^4\bar{p}$, $\theta(p^\circ) = \theta(\bar{p}^\circ) = \theta(\bar{E})$ $\Rightarrow \int dP A(p) f_{eq}(\frac{p \cdot u}{T}) = \int \frac{d^4p}{(2\pi)^3} A(p) 2\theta(p^0) \delta(p^2 - u^2) f_{ee}$ $= \int \frac{d^{4}\bar{p}}{(2\pi)^{3}} A(\bar{p}) 2\theta(\bar{E}) \delta(\bar{E}^{2} - (\bar{p}^{2} + m^{2})) f(\bar{E})$ $= \int \frac{d^{4}\bar{p}}{(2\pi)^{3}} A(\bar{p}) 2\theta(\bar{E}) \delta(\bar{E}^{2} - (\bar{p}^{2} + m^{2})) f(\bar{E})$ $= \int \frac{d^{4}\bar{p}}{(2\pi)^{3}} A(\bar{p}) 2\theta(\bar{E}) \delta(\bar{E}^{2} - (\bar{p}^{2} + m^{2})) f(\bar{E})$ $= \int \frac{d^3p}{2\pi)^3 \overline{E}} f(\overline{E}) A(\overline{p})$ => in local equilibrium Here moments can be

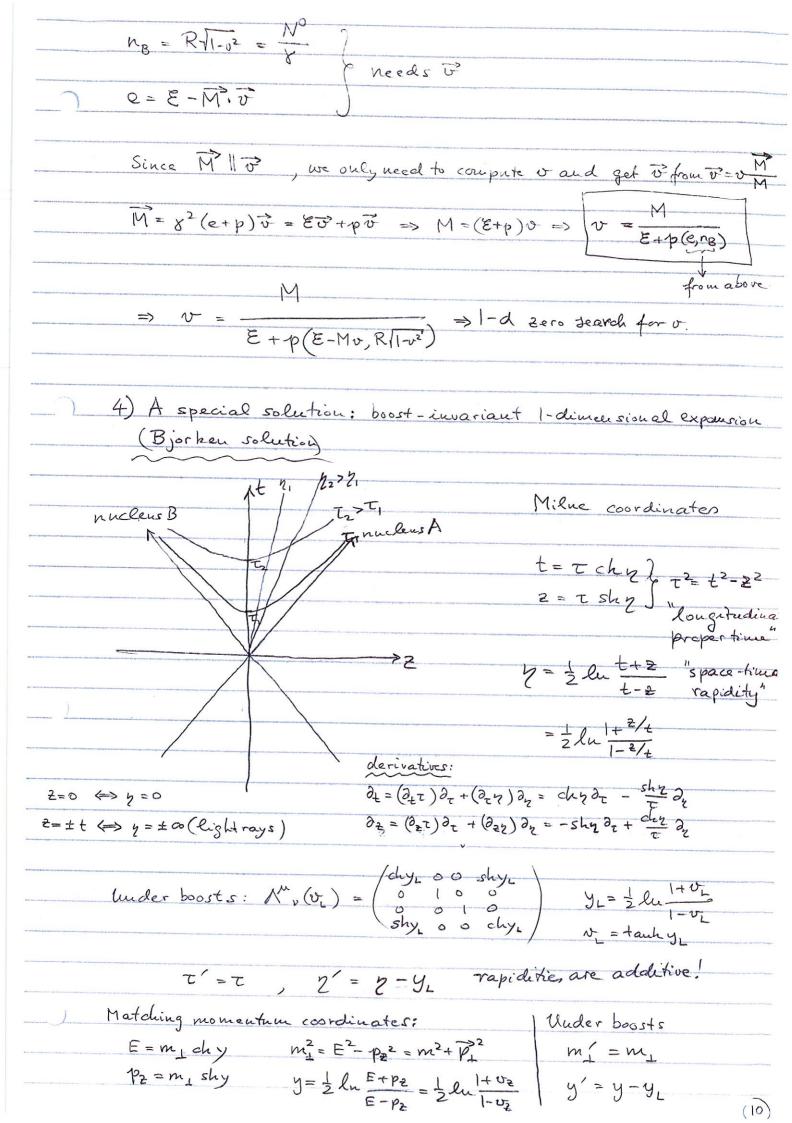
easily worked out introf coords

Since there are no ofthe collision invariant, $P^{VX} \neq 0$ in general. But $F^{\mu\nu}_{,} = m^2 j^{\nu}$ and $(P_q - P_q)^{\mu}_{\mu} = 0$ since $p^2 = m^2$ and $\int dP(C - \overline{C}) = 0$ For ideal fluids (f(x,p) = feq(x,p)) the moments have simple form: $N_{B(x)}^{\mu} = n_{B(x)} u^{\mu}(x)$ $u \cdot N_{B} = n_{B(x)} = 3 \int_{\overline{P}} d^{3}\overline{p} \left(f_{q}(\overline{E}) - \overline{f_{q}}(\overline{E})\right)$ fq = 3.25.Ng

fq = 3.25.Ng

fq = 3.25.Ng

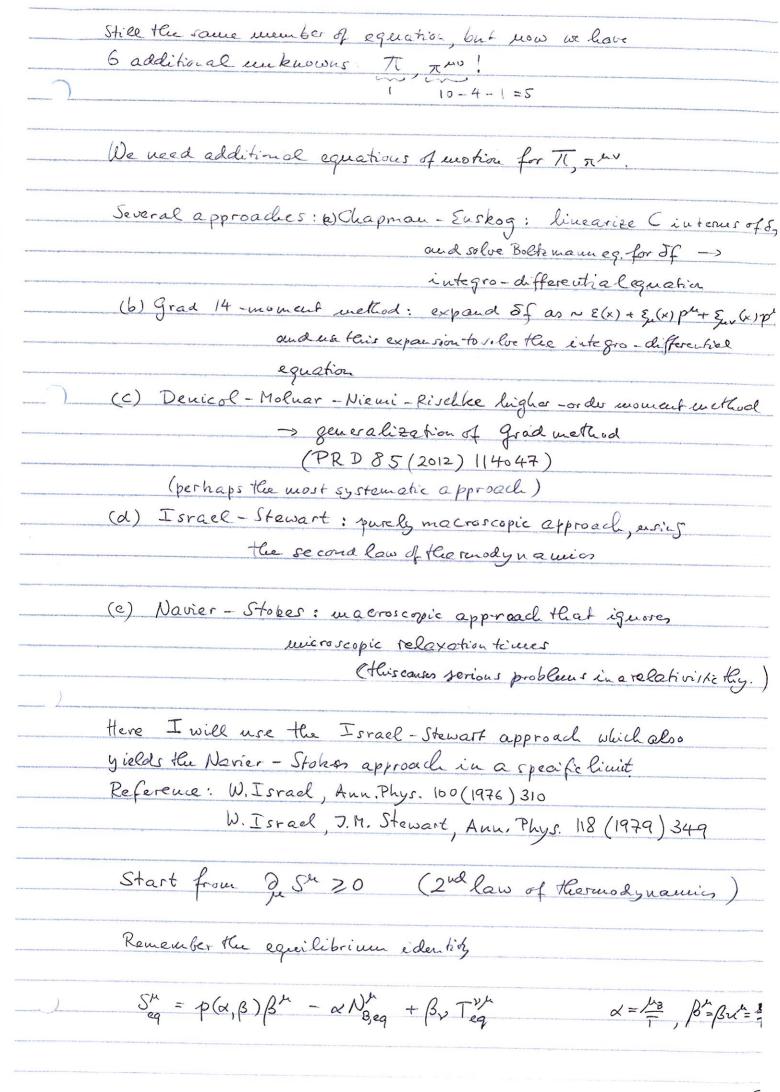

dE+yq)+1 Tru(x) = e(x) way wax) - p(x) buv(x) ($e = u_{\mu} T^{\mu\nu} u_{\nu} = \int dP(u.p)^2 f(u.p) = \int d^3p E(f+f+f_g)$ projection $f_3 = \frac{8_c \cdot 2_s}{\overline{\epsilon}/\tau - 1}$ technique $p = -\frac{1}{3} \int_{\mathbb{R}^{3}} T^{\mu\nu} = \int \frac{d^{3}\bar{p}}{\bar{E}} \frac{\bar{p}^{2}}{3} \left(f + \bar{f} + f_{g} \right)$ NB: Thous = ent => w = timelile eigenvector of The, with a gravalue Trace of $T^{\mu\nu}$: $T^{\mu}(x) = e(x) - 3p(x)$ For a classical system of massless particles: The =0 conformal symmetry! $\Rightarrow p = \frac{e}{3}$ for a conformally invariant system. (CMB, QGP, early universe where T>> mi, etc Strictly speaking, the ideas of an ideal fluid (requires g > 00, 5 > 00) and of classical on-shed particles are unitually inconsistent. Also, an ideal fluid will always show daviations from conformal symmetry Since interactions break the scale invariance (Th to, trace anomaly") But this only complicates the kinetic unicroscropic description - macroscopic hydrodynamics, with nonpert. Eos p(e, ng), remains valid. 6


3) Ideal fluid	l equations	of wotion	
	D N/ = 0		uuknowns:	n _B (x)
	0 Tuv = 0	4 egsus,		e(x) = 3 p(x)
N.C. (I) - Surveyor (p=p(e, ng)	Eos (leg.		u"(x) } 3
		6 equs,		6 muknowns /
(i)	EoM in local	rest frame	(best for m	iderstanding the physics)
	Write ge = u	~u° θ, + Δ, °	dr = UD +	Va.
And a start of the		+	une derivative	Spatial gradicutin C.r. 1
	Devote Df =			
	(a) 3 N/B =	0 = 0 (ng um) = w d ng +	$n_8 \partial_1 u^m = \dot{n}_8 + n_8 \partial$ $\partial = local expansion rate$
				0 = local expansion rate
		note: 2) uh = 0. u = V	in = Vuh
		since 1	uis Lun: i	$u = \nabla u^{\mu}$ $u^{\mu} = \frac{1}{2} D(u^{\mu}u_{\mu}) = 0$
	→ n _B	= - n _B 0	(similar for any	other conserved density!
				of expansion/contraction
n - Alderson of James 18, Ann 2008 - A method 3 final to Ann and an area		The second secon	of a	he fluid
	(b) g, Tm =0	= 0 [(e+p)u"	iv -pgm]= 1i	ν μη 3 (e+p) + (e+p) θ μν
				(e+p) un du - de
1	time-like con	iponent: proje	ect with up:	
.)	(A) D(e+p) +((e+p) 0 + (e+p)	2 D(u.n) = 0	$e = -(e+p)\theta$
		h. 4 f = 1	ra due to want do	changes by expansion only.
		our faster than v	is due to work do	TE by Dor st. in

(F)

(B) Plug this back in $u'(\dot{e}+\dot{p}+(e+p)\theta)+(e+p)\dot{u}'-u'Dp-\nabla'p=0$ => [iv = Pp] (New tou's second law: a = Fm) pressure gradients are the driving force for bydrodynamic expansion For an EoS of type $p = c_s^2 e$ $\left(c_s^2 = \frac{\partial P}{\partial e}\right)$ this reduces to -> scale invariance: magnitude of e acceleration driven by Go ("stiffness" of Eas) · large cs: fast acceleration, "stiff" Eos · low cs2: slow acceleration, "soft" EOS Special situation: 1st order phase transition p(e) = const. in mixed phase IP => Op = Cs = 0 (sound cannot propagate) -> unaccelerated ("self-similar") expansion of mixed phase, (ii) entropy conservation in ideal fluid dy namics (in the absence of shocks) · Fundamental law of thermodynamics Ts = p- /18 nB + e 5 = etp - 10 nB entropy correct: Sh = suh = (e+p) But - x ng x B=I $2 = \frac{\mu_B}{T}$ pBM + ByThis Br= un ⇒ Sr = p(x,B)Br - xNB + B, Tro (fund, law. th, dyn.)

8


Boost - invariance: In-phase-space: $f(\vec{x}, \vec{p}, t) = f(\vec{x}_1, t; \vec{p}_1, y; t) = f(\vec{x}_1, \vec{p}_1, y - t; \tau)$ combination In coordinate space: $e(x) = e(\vec{x_1}, \gamma, \tau) = e(\vec{x_1}, \tau)$ no y-dependence Why boost-invariance? Explain Bjorken's idea. Phenomenological evidence: rapidity plateau (predicted in 1983 by Sluts Bjorken, found in { 2010 at LHC) really Solution of hydrodynamic equations with boost - invariant initial conditions; u, (xi, z, t) cannot depend on z => um = chy (chy, v, vy, shy) where they (T, x,)=v, (T, x, 2=0 general boost-invariant form In Milue coordinates: um = (ut, ux, uy, u?) = chy (1, vx, vy, 0) => u = 0 = coust, [il=o (since V2p=o) => this reduces the dimensionality of the problem by 1.

If we ignore also transverse expansion (nuclei = infinitely large, transversally homogeneous discs) Vx = Uy = 0 $D = u^{\prime\prime} \partial_{l} = \frac{d}{dz}$ $n_{\rm g}(\tau) = n_{\rm g}(\tau_{\rm o}) \frac{T_{\rm o}}{\tau}$ linear growth of volume $\Rightarrow |S(\tau) = S(\tau_0) \frac{T}{\tau_0}$ $\frac{de}{d\tau} = \frac{e+p}{\tau} = -(1+c_s^2)\frac{e}{\tau} = > \left(2(\tau) = e(\tau_0)\left(\frac{\tau_0}{\tau}\right)^{Hc_s^2}\right)$ For QGP $e \sim p \sim T^4$, $c_s^2 \approx \frac{1}{3}$ $\int n \sim s \sim T^3$ $\left(\frac{s}{n} \approx 4\right)$ $\uparrow \Rightarrow \left(T(\tau) = T(\sigma) \left(\frac{T_{\sigma}}{\tau} \right)^{3} \right)$ Bjorken solution

5) 1/
5) Viscous fluid dynamics
TO STATE OF THE PROPERTY OF TH
Deviationes from local equilibrium:
(i) $f(x,p) = f_{eq}(x,p) + \delta f(x,p) = f_{eq}[1+(1\pm f_{eq})\phi(x,p)]$
$/ 2q(x)p/ + 0+(x,p) = 4eq[1+(1\pm 7eq)p(x,p)]$
Expand of in powers of gradients of the equilibrium parameters
T(x), $\mu_8(x)$, $\mu_m^{(x)}$
To make the expansion unique, need to find optimal
local equilibrium parameters for feq(x,p): T(x), µg(x), u"(x)
→ Landan matching:
$Sn_B = u SN_B^{\mu} = \int dP(u \cdot p) \left(Sf(x, p) - S\bar{f}(x, p) \right) = 0 \implies \underline{\mu}_B(x)$
S - CTWY
$\delta e = u \delta T^{\mu\nu} u_{\nu} = \int dP (u p)^2 (\delta f + \delta \bar{f} + \delta f_g) = 0 \implies T(x)$
fixing the local rest frame;
Jest Trame
Landan france: u" = time like eigenvertor of Tuv. Tuv.
Landan france: u" = time like eigenvector of Tuv: Tuvn = en
N/M
Ecleart frame: $N_B^{\mu} = N_B^{\mu} \Leftrightarrow SN_B^{\mu} = 0$
We will use the Landan frame.
With Sf #0, ux get from kinetic theory
No = Jap pr (fig-fag + 8f-8f) = ng wr + Vr
VM=DMNBv = net baryon flow in l.r.f
= 011 p (feq + feq + fg, eq) + (Sf + 2f + Sfg))
The = SdP propo ((feq + feq + fg, eq) + (δf + δf + δfg)) = e uhu - (p+π) Δην + πιν + (Whu + Whu)
N=bulk viscous pressure; The shear stress tensor; Wh= momentum flowind, r.f.
T3

Using projection we get (pr = ponur + Dry) = Eur + Properties $V'' = \Delta^{\mu\nu} N_{B\nu} = \int dP \, \overline{P}^{\mu} (\delta f - \delta \overline{f}) \xrightarrow{erf} \left(O_{\nu} \int_{(2\pi)^{3}}^{d^{3} \overline{f}} \overline{f} \left(\delta f - \delta \overline{f} \right) \right)$ p+T = - \frac{1}{3} \int_{ev} \tau^{nv} \rightarrow \tau = - \frac{1}{3} \int dP p. \Delta \cdot p (\delta \varepsilon + \delta \varepsilon p) = \int \frac{d^3 \bar{p}}{(2n)^3} \frac{\bar{p}}{3\bar{e}} \left(\delta \varepsilon + \delta \varepsilon \right) $W'' = \Delta V'' T_{\alpha} u^{\alpha} = \int dP(p \cdot u) \Delta^{n}_{p}(\delta f + \delta f + \delta f_{g}) \xrightarrow{erf} (0) \int_{(2\pi)^{3}}^{d^{3}p} \overrightarrow{p}(\delta f + \delta f + \delta f + \delta f_{g})$ The = Day Tab = [\frac{1}{2} Da Da B + Da Da B] Tab

transverse to which traceless = Sap (Prp"- 3 And P2) (staf +ofg) - lof Sage (pipj- 3 8ij = 2) (6f+ 8j for i,j=1,2,3 (O else) (no time components introf) traceless e, no and p still are the same integrals of feg as before -they receive no contributions from of. Inthis frame one works V"=- ng qthe
with the "heat flow vector" qthe For a baryon-free (ng=0) system we expect Sf= Sf and thus Vt=0. Hence forth consider this case (nB = V"=0). NB: This does not imply SNr = JdP Pr Sf = SWr, Hough. So we expect in general SNM, SNM, SNM +0. Viscous fluid equations in comoring coordinates: Using similar techniques as in ideal fluid case, we find the viscous fluid equations in the Landon frame e = -(e+p+T)0 + To om Our = Dur Dar = Direr; (e+p+) it = Vr(p+T) - DMV To + Their Velocity shear tensor

In near-equilibrium we write Sh = Sh + In = p(x,B)Br - XNB+B, The + Qh SNB, STher) The terms - & SNo + By STW I counibe linear terms in gh, The T; Que contributes ligher order termes We can rewrite the Gibbs - Duhem relation from p. 9, (using thermody n. identities in equilibrium) as The (p(a,B)B") = No dix - The dis. to find (using JuN's =0 = 3,700) g. St = - 5NB gra + 5Th gras + gran Using the decomposition of 5Ng and 5Th in terms of 9th, TI, TIME we can rewrite this as Toush = TX - 9tx + Tou Xu + Tough where we introduced the thermodynamic forces $X = -\theta = -\nabla \cdot u$ Scalar force $X_{p} = \frac{\sqrt{n_{g}T}}{T} - iy_{p} = -\frac{n_{g}T}{e+p} \nabla_{\mu} \left(\frac{\mu_{g}}{T}\right)$ Xu = O = Vuly The second law of thermodynamics now requires TX - 9x X + Thu X + 2 Qh > 0

(

(A) Relativistic Navier-Stokes theory (See Landan-Lifshitz, Fluid Dynamics) I gnore second-order terms, set QM = 0 => 2nd law is automatically satisfied if we demand $T = -J\theta$ J = bulk viscosite $q^{\nu} = -k \frac{hT^{2}}{e+P} \nabla^{\nu}(k^{B}) \quad k = heat conductivite$ $\pi^{\mu\nu} = 2 \gamma \sigma^{\mu\nu} \qquad \gamma = shear viscosite$ Such that 9,5th = The - 9 9 4 + Tap > 0 (remember: gr is spacelike!) problem: the instantaneous response(*) of SWB 5TW to the thermodynamic forces is a causal! =) Superluminal signal propagation, bustable solutions of viscous hydro EDM V (B) Causal viscous relativistic fluid dynamics (Israel-Stewart theory) keep Qt, parametrice it to second order in Stew ignoring que again, this is done as follows $Q^{\mu} = -\left(\beta_{o} \pi^{2} + \beta_{z} \pi_{v\lambda} \pi^{v\lambda}\right) \frac{u^{\mu}}{2\tau}$ TO.S = TI [-0-BiT-TT gu (Bound)]+ TOB[OGB-BZZOB-TOB]

This is positive definite if we set the expressions in [...] proportional to TI, Top such that D. S looks like in MS theory. $\dot{T} = -\frac{1}{\pi} \left[\pi + 5\theta + \pi 5T g \left(\frac{\pi u}{25T} \right) \right]$ $\Delta_{\mu\nu}^{\alpha\beta} \pi^{\mu\nu} = -\frac{1}{\pi} \left[\pi^{\alpha\beta} - 2y\sigma^{\alpha\beta} + \pi^{\alpha\beta} 2T \partial_{\mu} \left(\frac{\tau_{\pi}u^{\mu}}{2\pi T} \right) \right]$ Telaxation times Ty = JBo and Ty = 27/2 => Causality restored! Using 8 = 5T 2 (True), 8 = 5T 2 (True) this can be rewritten as $\dot{\vec{T}} = -\frac{1}{T'} \left[T + 5'\theta \right]$ Nu + 4 = - 1 [Thu - 24 6 m] (XX) where $T_{\pi} = \frac{T_{\pi}}{1 + \chi_{\pi}}$ $T_{\pi} = \frac{T_{\pi}}{1 + \chi_{\pi}}$ $5' = \frac{3}{1 + \chi_{\pi}}$ $2' = \frac{2}{1 + \delta_{\pi}}$ -> fast expansion (8 to large) effective reduces the viscosities and relaxation times De must be solved to gether with the viscous lydro equations.

For a conformal system 8 = 8 = 4 8 7.

(15

For a discussion of anisotropic hydrodynamics please refer to

M. McNelis, D.Bazow, U. Heinz, Phys. Rev. C 97, 054912 (2018)

"(3+1)-dimensional anisotropic fluid dynamics with a lattice QCD equation of state" $\,$