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1. Calculate (to lowest order, one tree diagram) the differential QED cross section dσ/dt
for e−µ− → e−µ− scattering neglecting all the masses. Express the result in terms of
the Mandelstam invariants s, t and u. What is the high energy limit of the cross section,
i.e. the limit t fixed, s ∼ −u→∞?

2. In the previous problem, what happens if you replace the photon by a massless scalar
particle? I.e. replace gµν → 1 in the photon propagator and γµ → 1 in the vertex. What
is the high energy limit now? (This calculation is shorter than the previous one).

3. Derive the Green’s function for the Helmholtz equation that was skipped in the lectures.
Start from the definition (ω2+∇2)G(x,y) = −δ3(x−y). Defining the Fourier transform
as

G(x,y) =

∫
d3p

(2π)3
eip·(x−y)G(p)

calculate first G(p) and then G(x,y). You have to regularize the p integral; doing this
with the substitution ω → ω+ iε will give the result we want here. What do you get if
you replace ω → ω − iε (we are assuming ω > 0)?

4. (a) Show (this is easy) that if

dσel.
d2qT

=

∣∣∣∣ i2π
∫

d2bT e
−iqT ·bT Γ(bT )

∣∣∣∣2
then

σel =

∫
d2bT |Γ(bT )|2

(b) The total cross section is

σtot = 2

∫
d2bTRe[Γ(bT )],

and the partial wave unitarity bound is |Γ(bT )|2 ≤ 2Re[Γ(bT )], which leads to
σel ≤ σtot (a pretty natural requirement). Where in the complex plane can Γ(bT )
be to satisfy this?

(c) Assuming that Re[Γ(bT )] = Γ0e
−b2

T /(2B) and Im[Γ(bT )] = 0.141Re[Γ(bT )], σel =
25.4mb and σtot = 98.6mb, what are B and Γ0 ? The cross section numbers
for pp-scattering at

√
s = 7TeV come from TOTEM, Europhys.Lett. 101 (2013)

21002, https://cds.cern.ch/record/1472948/files/CERN-PH-EP-2012-239.

pdf. Is the Gaussian bT -dependence consistent with Fig. 2 of the paper? (t = −q2
T )

5. Calculate ∫ ∞
−∞

dk
eikx

k2 +m2
.
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This can be done the easy way using the theorem of residues; there is probably also
a hard way without it. Then calculate the two dimensional transform needed in the
virtual photon-dipole wave function∫

d2kT
eikT ·rT

k2
T +m2

and compare. This is perhaps easiest to do by integrating over the angle first, which
leaves you with the Bessel J0(|kT ||rT |) = J0(kr). The integral over k then gives a
modified Bessel K0. Mathematica will do the k-integral for you, maybe even the two-
dimensional one directly? Otherwise one probably needs integral representations of J0
and K0.

6. Fourier-transform the essential part of the LC wave function for emitting a soft gluon:∫
d2kT e

ikT ·rT εT · kT
k2
T

.

This can be done analytically (even without mathematica!) by first integrating over
the angle, which gives a Bessel function J1 that is the derivative of J0; thus the radial
integral is easy. Note that there are two independent azimuthal angles, those of εT and
rT . Surprisingly the integral is really convergent without any regularization.

7. (Kovchegov & Levin, 4.5 b) Solve the BK equation in zero transverse dimensions:

∂yN = αsN − αsN
2, N(y = 0) = N0 � 1 (1)

8. (Kovchegov & Levin, exercise 5.1 a,b) The gluon field radiated from a fast-moving
quark can be written using usual covariant theory Feynman rules as

p

p− k

k, a

gta

Aaµ(k) = −igta −igµν
k2 + iε

ūσ(p− k)γνuσ(p)(2π)δ((p− k)2) (2)

The incoming quark is on shell, with pµ = (p+, 0,0T ).

(a) In covariant gauge we can use the eikonal vertex: assuming p+ ≈ (p − k)+ � k+

show or convince yourself (e.g. using the Gordon decomposition) that the leading
high energy behavior is

ūσ′(p− k)γνuσ(p) ≈ 2p+δν+δσσ′ (3)

(b) Then Fourier-transform

Aaµ(x) =

∫
d4k

(2π)4
e−ik·xAaµ(k) (4)

to get the field in coordinate space

A+a
cov = − g

π
taδ(x−) ln |xT |Λ (5)

9. Consider two (independent of each other) transverse (i, j ∈ {1, 2}) pure gauge fields

that depend only on transverse coordinates A
(1,2)
i = A

(1,2)
i,a ta = −i

g U(xT )∂iU
†(xT ).

Recall the expression for the field strength tensor Fµν and show that these pure gauges

have no longitudinal magnetic field F
(1,2)
ij = 0. Then consider a field that is the sum of

the two: Ai = A
(1)
i +A

(2)
i : what is its magnetic field Fij?


