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Exercise: Relativistic Bose gas at nonzero chemical potential

Consider a complex scalar field, with a global symmetry φ → eiαφ. The (Euclidean) action is

S =

∫

d4x
(

|∂νφ|2 +m2|φ|2 + λ|φ|4
)

, (1)

and the conserved charge reads

N =

∫

d3x i [φ∗∂4φ− (∂4φ
∗)φ] . (2)

We take m2 > 0, so that at vanishing and small µ the theory is in its symmetric phase.
In order to write down the euclidean path integral at nonzero µ, we have to revisit the derivation

of the path integral with a bit more care (see e.g. Kapusta and Gale, Finite-temperature field theory).
We start from the partition function,

Z = Tr e−(H−µN)/T , (3)

and express the hamiltonian and conserved charge (densities) in terms of the canonical momenta
π1 = ∂4φ1, π2 = ∂4φ2, where φ = (φ1 + iφ2)/

√
2. For example, the charge now takes the form

N =

∫

d3x (φ2π1 − φ1π2) . (4)

Following the standard derivation of the path integral, one finds that the partition function then reads

Z =

∫

Dφ1Dφ2

∫

Dπ1Dπ2 exp

∫

d4x
[

iπ1∂4φ1 + iπ2∂4φ2 −H+ µ(φ2π1 − φ1π2)
]

. (5)

Note that we use Euclidean time already at this stage.
i) Integrate out the momenta π1,2 to arrive at the following expression for the euclidean action

S =

∫

d4x
[

(∂4 + µ)φ∗(∂4 − µ)φ+ |∂iφ|2 +m2|φ|2 + λ|φ|4
]

=

∫

d4x
[

|∂νφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂4φ− ∂4φ
∗φ) + λ|φ|4

]

. (6)

ii) The corresponding lattice action, with lattice spacing alat ≡ 1, is

S =
∑

x

[

(

2d+m2
)

φ∗
xφx + λ (φ∗

xφx)
2 −

4
∑

ν=1

(

φ∗
xe

−µδν,4φx+ν̂ + φ∗
x+ν̂e

µδν,4φx

)

]

, (7)

where the number of euclidean dimensions is d = 4. Show that this action reduces to Eq. (6) in the
continuum limit.
iii) The complex field is written in terms of two real fields φa (a = 1, 2) as φ = 1√

2
(φ1 + iφ2). Show

that the lattice action then reads

S =
∑

x

[

1

2

(

2d+m2
)

φ2
a,x +

λ

4

(

φ2
a,x

)2 −
3

∑

i=1

φa,xφa,x+î

− coshµφa,xφa,x+4̂ + i sinhµ εabφa,xφb,x+4̂

]

, (8)

where εab is the antisymmetric tensor with ǫ12 = 1, and summation over repeated indices is implied.
Note that the ‘sinhµ’ term is complex.

From now on the self-interaction is ignored and we take λ = 0. After going to momentum space,
the action (8) reads

S =
∑

p

1

2
φa,−p (δabAp − εabBp)φb,p =

∑

p

1

2
φa,−pMab,pφb,p, (9)
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where

Mp =

(

Ap −Bp

Bp Ap

)

, (10)

and

Ap = m2 + 4

3
∑

i=1

sin2
pi
2

+ 2 (1− coshµ cos p4) , Bp = 2 sinhµ sin p4. (11)

iv) Show that the propagator corresponding to the action (9) is

Gab,p =
δabAp + εabBp

A2
p +B2

p

. (12)

v) Demonstrate that the dispersion relation that follows from the poles of the propagator, taking
p4 = iEp, reads

coshEp(µ) =

(

1 +
1

2
ω̂2
p

)

coshµ± ω̂p

√

1 +
1

4
ω̂2
p sinhµ, (13)

where
ω̂2
p = m2 + 4

∑

i

sin2
pi
2
. (14)

vi) Show that this can be written as

coshEp(µ) = cosh [Ep(0)± µ] , (15)

such that the (positive energy) solutions are

Ep(µ) = Ep(0)± µ. (16)

Sketch the spectrum. Note that the critical µ value for onset is µc = E0(0), so that one mode becomes
exactly massless at the transition (Goldstone boson).
vii) The phase-quenched theory corresponds to sinhµ = Bp = 0. Show that the dispersion relation in
the phase-quenched theory is

coshEp(µ) =
1

coshµ

(

1 +
1

2
ω̂2
p

)

, (17)

which corresponds to E2
p(µ) = m2 − µ2 + p2 in the continuum limit.

viii) Compare the spectrum of the full and the phase-quenched theory, when µ < µc. At larger µ,
it is necessary to include the self-interaction to stabilize the theory. Based on what you know about
symmetry breaking, sketch the spectrum in the full and the phase-quenched theory at larger µ as well.

Although the spectrum depends on µ, thermodynamic quantities do not. Up to an irrelevant
constant, the logarithm of the partition function is

lnZ = −1

2

∑

p

ln detM = −1

2

∑

p

ln(A2
p +B2

p), (18)

and some observables are given by

〈|φ|2〉 = − 1

Ω

∂ lnZ

∂m2
=

1

Ω

∑

p

Ap

A2
p +B2

p

, (19)

and

〈n〉 = 1

Ω

∂ lnZ

∂µ
= − 1

Ω

∑

p

ApA
′
p +BpB

′
p

A2
p +B2

p

, (20)

where Ω = N3
σNτ and A′

p = ∂Ap/∂µ, B
′
p = ∂Bp/∂µ.

ix) Evaluate the sums (e.g. numerically) to demonstrate that thermodynamic quantities are indepen-
dent of µ in the thermodynamic limit at vanishing temperature.
This exercise is based on G. Aarts, JHEP 0905 (2009) 052 [arXiv:0902.4686 [hep-lat]].

2



Gert Aarts Swansea University

Exercise: Fokker-Planck equation

Consider the Langevin process

ẋ(t) = K[x(t)] + η(t), K(x) = −S′(x), 〈η(t)η(t′)〉η = 2λδ(t− t′), (21)

where λ normalises the noise and K is the drift term, which is derived from the action S. In order
to study the equilibrium solution, i.e. the distribution to which the Langevin process (hopefully!)
converges, we want to derive the associated Fokker-Planck equation

∂tρ(x, t) = ∂x (λ∂x −K)ρ(x, t), (22)

for the distribution ρ(x, t), defined via

〈O[x(t)]〉η =

∫

dx ρ(x, t)O(x), (23)

with O(x) a generic observable. Here the subscript η denotes noise averaging and will be dropped
from now on.

To achieve this we consider the discretized process

δn ≡ xn+1 − xn = ǫKn +
√
ǫηn, 〈ηnηn′〉 = 2λδnn′ . (24)

i) Show that

〈O(xn+1)〉 − 〈O(xn)〉 = 〈O′(xn)δn +
1

2
O

′′

(xn)δ
2
n + . . .〉

= ǫ〈O′(xn)Kn + λO
′′

(xn)〉+O(ǫ3/2). (25)

In the ǫ → 0 limit, this gives

∂t〈O(x)〉 = 〈O′(x)K(x) + λO
′′

(x)〉. (26)

ii) Use Eq. (23) to demonstrate that this yields the Fokker-Planck equation (22) for ρ(x, t). What
should λ be in order to obtain the desired equilibrium distribution, ρ(x) ∼ exp(−S(x))?
iii) We now repeat the analysis for the Langevin process with a complex drift, K(z) = −S′(z) ∈ C. We
write this as a real Langevin process in the complex plane, i.e. with the complex Langevin equations,

ẋ = Kx + ηx, Kx = −ReS′(z), 〈ηx(t)ηx(t′)〉 = 2λxδ(t− t′),

ẏ = Ky + ηy, Ky = −ImS′(z), 〈ηy(t)ηy(t′)〉 = 2λyδ(t− t′). (27)

By writing z = x+ iy, show that these Langevin equations are indeed equivalent to

ż = −S′(z) + η, 〈η(t)η(t′)〉 = 2δ(t− t′). (28)

Express η in terms of ηx,y and derive the necessary restrictions on λx,y (answer: λx − λy = 1). The
case λy > 0 is referred to as complex noise.
iv) The distribution P (x, y; t) is now defined via

〈O[x(t) + iy(t)]〉η =

∫

dxdy P (x, y; t)O(x + iy). (29)

Show that P (x, y; t) satisfies

∂tP (x, y; t) = [∂x (λx∂x −Kx) + ∂y (λy∂y −Ky)]P (x, y; t). (30)

This is reviewed e.g. in Damgaard and Hüffel, Phys. Rept. 152 (1987) 227. For real Langevin dynamics,
one can prove that the process converges, i.e. that the Fokker-Planck equation (22) converges to the
equilibrium solution exponentially fast. For a complex action, this general proof breaks down. In
fact, Eq. (30) has no generic solutions! Complex noise and especially its problems are discussed in
G. Aarts, E. Seiler and I. O. Stamatescu, Phys. Rev. D 81 (2010) 054508 [arXiv:0912.3360 [hep-lat]].
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Exercise: Complex Gaussian model

For Gaussian models with a complex action, the Fokker-Planck equation (30) can be solved and one
can show that the expected results are obtained. Consider the complex integral

Z =

∫ ∞

−∞
dx ρ(x), ρ(x) = e−S , S =

1

2
σx2, σ = a+ ib. (31)

i) Show that the corresponding complex Langevin equations are given by

ẋ = Kx + η, Kx = −ax+ by, (32)

ẏ = Ky, Ky = −ay − bx, (33)

where 〈η(t)η(t′)〉 = 2δ(t− t′). We consider real noise only.
ii) Demonstrate that these Langevin equations are solved by

x(t) = e−at [cos(bt)x(0) + sin(bt)y(0)] +

∫ t

0

ds e−a(t−s) cos[b(t− s))]η(s), (34)

y(t) = e−at [cos(bt)y(0)− sin(bt)x(0)] −
∫ t

0

ds e−a(t−s) sin[b(t− s)]η(s). (35)

iii) Show that the expectation values in the infinite time limit are given by

〈x2〉 = 1

2a

2a2 + b2

a2 + b2
, 〈y2〉 = 1

2a

b2

a2 + b2
, 〈xy〉 = −1

2

b

a2 + b2
. (36)

iv) Demonstrate that this yields the desired result

〈x2〉 → 〈(x+ iy)2〉 = a− ib

a2 + b2
=

1

a+ ib
=

1

σ
. (37)

v) The Fokker-Planck equation for the (real and positive) weight P (x, y; t), defined via

〈O(x(t) + iy(t))〉 =
∫

dxdy P (x, y; t)O(x + iy), (38)

is given by
∂tP (x, y; t) = [∂x (∂x −Kx)− ∂yKy]P (x, y; t) (39)

Since the original integral is Gaussian, the equilibrium distribution P (x, y) is also Gaussian and can
be written as

P (x, y) = N exp
[

−αx2 − βy2 − 2γxy
]

, (40)

where N is a normalization constant.
Using the Fokker-Planck equation, show that the coefficients are given by

α = a, β = a

(

1 +
2a2

b2

)

, γ =
a2

b
, (41)

and demonstrate that this gives the previously computed expectation values

〈x2〉 =
∫

dxdy P (x, y)x2

∫

dxdy P (x, y)
, (42)

etc.
vi) From the equivalence

∫

dx ρ(x)O(x) =

∫

dxdy P (x, y)O(x + iy), (43)

it follows that the real distribution is related to the original complex one via

ρ(x) =

∫

dy P (x− iy, y). (44)

Verify this explicitly (up to the undetermined normalization).
This is simple version of the problem treated in G. Aarts, JHEP 0905 (2009) 052 [arXiv:0902.4686
[hep-lat]].
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