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Where are we?

complex weight:

straightforward importance sampling not possible

overlap problem

various possibilities:

preserve overlap as best as possible

use approximate methods at small µ

do something radical:

rewrite partition function in other dof
explore field space in a different way
. . .
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Fermion determinant

standard approach suffers from sign problem

complex determinant after integrating out fermions

try something else:

do not integrate out fermions!

integrate out gluons first!

Z =

∫

DUDψ̄Dψ e−SYMe−SF SYM = −β
∑

plaquettes

how to integrate out gluons? YM theory cannot be solved ...

instead: ‘strong coupling expansion’

expansion in β ≡ 2N/g2 ≪ 1

INT, August 2012 – p. 3



Strong coupling expansion

at leading order: β ≡ 2N/g2 = 0

‘wrong limit’: asymptotic freedom: g2 → 0 ⇔ β → ∞

no continuum limit

coarse lattice by construction

no universality

but

confinement

formulated in terms of mesons and baryons

qualitative insight

(apparent) milder sign problem

illustration how to think differently
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Strong coupling limit

β = 0: no YM action

Z =

∫

Dψ̄Dψ

∫

DUeψ̄Uψ

do U -integral first: set of independent one-link integrals

Rossi & Wolff 84, Karsch & M ütter 89

Fromm & de Forcrand 08-10, thesis Fromm 10

for definiteness: one flavour of staggered fermion χ

SF =
∑

x

[

∑

ν

ηνx
(

χ̄xUνxχx+ν − χ̄x+νU
†
νxχx

)

+ 2mqχ̄xχx

]

ηνx = (−1)
∑

ρ<ν xρ Kawamoto-Smit phases

left-overs from γ-matrices
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Strong coupling limit

single-component Grassmann variables χix, χ̄ix
(colour index i = 1, . . . , N )

∫

dχixdχ̄jy χ̄ixχjy = 1

∫

dχix 1 =

∫

dχ̄ix 1 = 0

introduce different lattice spacing in space and time
(as ≡ a, aτ ) anisotropy γ = a/aτ (in weak coupling)

Z =

∫

∏

x

dχxdχ̄x e
2mqχ̄xχx

4
∏

ν=1

z(x, x+ ν)

one-link integral: z(x, x+ν) =

∫

dUνx e
ηνx[χ̄xUνxχx+ν−χ̄x+νU

†
νxχx]

introduce chemical potential: U±4x → γe±µU±4x
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One-link integrals

one-link integral: z(x, y) =

∫

dU eχ̄ixUijχjy−χ̄iyU
†
ijχjx (y = x+ ν)

invariant measure for group integrals:

normalization
∫

dU = 1

invariance
∫

dU f(U) =
∫

dU f(UV ) =
∫

dU f(V U)
(V arbitrary SU(N ) matrix)

examples:
∫

dU Uij

∫

dU UijU
†
kl

∫

dU UijUkl

∫

dU Ui1j1 . . . UiNjN

all integrals should be proportional to invariants δij
and ǫi1...iN
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One-link integrals
∫

dU Uij =

∫

dU UijUkl = 0

∫

dU UijU
†
kl =

1

N
δilδjk

etc.

what about
∫

dU Ui1j1 . . . UiNjN ?

use
detU = ǫi1...iNUi11Ui22 . . . UiNN = 1

or ǫi1...iNUi1j1Ui2j2 . . . UiN jN = ǫj1...jN

result
∫

dU Ui1j1 . . . UiNjN =
1

N !
ǫi1...iN ǫj1...jN
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One-link integrals

what should we get? z(x, y) =

∫

dU eχ̄xUχy−χ̄yU
†χx

two ingredients:

gauge invariance χx → Ωxχx χ̄x → χ̄xΩ
†
x

gauge invariant combinations

Mx = χ̄ixχix meson

Bx =
1

N !
ǫi1...iNχi1 . . . χiN baryon

B̄x =
1

N !
ǫi1...iN χ̄iN . . . χ̄i1 anti-baryon

Grassmann variables: at most N χix’s at one site
(χ2

ix
= 0 for fixed colour index i)
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One-link integrals

gauge invariance and Grassmann nature:

z(x, y) =

N
∑

k=0

αk (MxMy)
k + α̃

(

B̄xBy + (−1)N B̄yBx
)

combination of meson and baryon fields

Mx = χ̄ixχix meson

Bx =
1

N !
ǫi1...iNχi1 . . . χiN baryon

B̄x =
1

N !
ǫi1...iN χ̄iN . . . χ̄i1 anti-baryon

determine coefficients αk, α̃
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Full partition function

one-link partition function:

z(x, y) =

N
∑

k=0

(N − k)!

N !k!
(MxMy)

k + B̄xBy + (−1)N B̄yBx

to do: remaining Grassmann integrals:

Z =

∫

∏

x

dχxdχ̄x e
2mqχ̄xχx

∏

ν

z(x, x+ ν)

for every site not yet fully occupied with mesons:

expand e2mqχ̄χ, e.g.
∫

dχxdχ̄x e
2mqχ̄xχx(χ̄xχx)

k =
N !

nx!
(2mq)

nx nx = N − k
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Full partition function

final result: all Nc quarks and anti-quarks below to either:

hopping mesons (MxMy)
k dimers

k = 0, . . . , N non-oriented

hopping (anti-)baryons B̄xBy oriented

left-over quarks (Mx)
nx monomers

baryons

x

y

mesons

.  .  .

k

monomers

baryon loops: all χi are involved

closed
self-avoiding
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Full partition function

closed baryon loops

monomer/dimer system: every site occupied by Nc = 3
(anti)quarks

0nx 3 2 1 1 0 0
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Full partition function

closed baryon loops

monomer/dimer system: every site occupied by Nc = 3
(anti)quarks

0nx 3 2 1 1 0 0

example configuration (Nc = 3):
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Ensemble

sum over all these configurations, with proper weight:

kb dimers, nx monomers, lB baryon loops

Z =
∑

[kb,n,lB ]

∏

links b=(x,ν)

(N − kb)!

N !kb!

∏

x

N !

nx!
(2mq)

nx

∏

lB

w(lB)

chemical potential dependence?

only in baryon loops winding around time direction!

w(lB) ∼ σ(lB)e
rlBNcNτµ

rlB : winding in temporal direction
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Ensemble

baryon loop weight:

w(lB) ∼ σ(lB)e
rlBNcNτµ

rlB : winding in temporal direction

natural combination rlB ×Nc ×Nτ × µ = rlBµB/T

σ(lB) = ±1: geometrical factor, depends on loop

weight not positive-definite even at µ = 0!
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Ensemble

aside: observables

condensate

〈χ̄χ〉 =
1

Ω

∂

∂mq
lnZ ∼

1

Ω

〈

∑

x

nx

〉

monomer density

baryon number

〈nB〉 =
T

V

∂

∂µB
lnZ ∼

1

V

〈

∑

lB

rlB

〉

winding number density of baryon loops

INT, August 2012 – p. 17



Sign problem

even at µ = 0, baryon weight not positive-definite:
geometric loop-dependent sign

worse off?

general strategy: combine various contributions

when summed analytically: positive contribution

task: identify proper configurations to sum analytically
Karsch & M ütter 88

note:

useful strategy in wide set of models

but: what contributions to sum?
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Sum contributions

every baryon loop can be combined with two chains of
dimer loops

also in temporal direction

B D D’B’
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Sum contributions

separate weights: w(lB) w(lB′) w(lD) w(lD′)

B D D’B’

combine the weights in clever combinations: ‘polymers’

w(lP ) = w(lD) +
1

2
[w(lB) + w(lB′)]

w(lP ′) = w(lD′) +
1

2
[w(lB) + w(lB′)]

exactly same configurations
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Sum contributions

combine the weights: polymer weights (recall σ(lB) = ±1)

monomer-dimer-polymer (MDP) system

closed baryon loop: no µ dependence

w(lP ) = 1 + σ(lB) ≥ 0

temporal loops: baryons e+µ anti-baryons e−µ

combine

w(lP ) = 1 + σ(lB) cosh
(rlBµB

T

)

non-negative when µ = 0: new sign problem solved

still sign problem remaining at µ 6= 0
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Sign problem

in practice: sign problem is mild de Forcrand & Fromm 08-10

recall 〈eiϕ〉pq =
Z

Zpq
= e−Ω∆f

in this model: a4∆f . 10−4

sign problem under control on small volumes:
Ω = 83 × 4 ⇔ Ω∆f ∼ 0.2
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Simulations

sign problem present but mild

simulations on small volumes: can use reweighting

why mild?

fluctuating gauge fields integrated out first (β = 0)

different sampling of configuration space

. . . but not completely understood

aside

other algorithmic improvement: worm algorithm
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Strong coupling phase diagram

mean field prediction Y. Nishida 04, Ohnishi et al 05-now

mq = 0: 1st order at low T , 2nd order at higher T
separated at tricritical point (TCP)

mq > 0: crossover at higher T , critical endpoint (CEP)
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Strong coupling phase diagram

simulations

de Forcrand & Fromm 08

amq = 0

CEP for amq > 0

qualitative agreement / quantitative deviation from MF

note:

Silver Blaze: 〈nB〉 = 0/1 (µ < µc)/(µ > µc)

immediate saturation
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Ongoing research

take aτ → 0 (continuous time): arXiv:1111.1434

sign problem absent even when µ 6= 0

reduced discretization (finite Nτ ) effects

corrections to strong-coupling limit: arXiv:1111.4677

gluonic observables: Polyakov loop
O(β) correction
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Summary

strong coupling

insight in QCD phase diagram

test ground for alternative algorithms

sign problem milder than in full QCD
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