QCD at nonzero chemical potential and the sign problem

INT lectures 2012

IV: strong coupling

Gert Aarts

Where are we?

complex weight:

- straightforward importance sampling not possible
- overlap problem
various possibilities:
- preserve overlap as best as possible
- use approximate methods at small μ
- do something radical:
- rewrite partition function in other dof
- explore field space in a different way
- ...

Fermion determinant

- standard approach suffers from sign problem
- complex determinant after integrating out fermions
try something else:
- do not integrate out fermions!
- integrate out gluons first!

$$
Z=\int D U D \bar{\psi} D \psi e^{-S_{\mathrm{YM}}} e^{-S_{\mathrm{F}}} \quad S_{\mathrm{YM}}=-\beta \sum \text { plaquettes }
$$

how to integrate out gluons? YM theory cannot be solved ...

- instead: 'strong coupling expansion’
expansion in $\beta \equiv 2 N / g^{2} \ll 1$

Strong coupling expansion

at leading order: $\quad \beta \equiv 2 N / g^{2}=0$
'wrong limit': asymptotic freedom: $\quad g^{2} \rightarrow 0 \Leftrightarrow \beta \rightarrow \infty$

- no continuum limit
- coarse lattice by construction
- no universality
but
- confinement
- formulated in terms of mesons and baryons
- qualitative insight
- (apparent) milder sign problem
illustration how to think differently

Strong coupling limit

$\beta=0$: no YM action

$$
Z=\int D \bar{\psi} D \psi \int D U e^{\bar{\psi} U \psi}
$$

do U-integral first: set of independent one-link integrals

```
    Rossi & Wolff 84, Karsch & Mütter 89
Fromm & de Forcrand 08-10, thesis Fromm 10
```

for definiteness: one flavour of staggered fermion χ

$$
\begin{aligned}
S_{\mathrm{F}}= & \sum_{x}\left[\sum_{\nu} \eta_{\nu x}\left(\bar{\chi}_{x} U_{\nu x} \chi_{x+\nu}-\bar{\chi}_{x+\nu} U_{\nu x}^{\dagger} \chi_{x}\right)+2 m_{q} \bar{\chi}_{x} \chi_{x}\right] \\
\eta_{\nu x}=(-1)^{\sum_{\rho<\nu} x_{\rho}} & \begin{array}{l}
\text { Kawamoto-Smit phases } \\
\text { left-overs from } \gamma \text {-matrices }
\end{array}
\end{aligned}
$$

Strong coupling limit

single-component Grassmann variables $\quad \chi_{i x}, \bar{\chi}_{i x}$
(colour index $i=1, \ldots, N$)

$$
\int d \chi_{i x} d \bar{\chi}_{j y} \bar{\chi}_{i x} \chi_{j y}=1 \quad \int d \chi_{i x} 1=\int d \bar{\chi}_{i x} 1=0
$$

- introduce different lattice spacing in space and time ($a_{s} \equiv a, a_{\tau}$) anisotropy $\gamma=a / a_{\tau}$ (in weak coupling)

$$
Z=\int \prod_{x} d \chi_{x} d \bar{\chi}_{x} e^{2 m_{q} \bar{\chi}_{x} \chi_{x}} \prod_{\nu=1}^{4} z(x, x+\nu)
$$

one-link integral: $\quad z(x, x+\nu)=\int d U_{\nu x} e^{\eta_{\nu x}\left[\bar{\chi}_{x} U_{\nu x} \chi_{x+\nu}-\bar{\chi}_{x+\nu} U_{\nu x}^{\dagger} \chi_{x}\right]}$

- introduce chemical potential: $U_{ \pm 4 x} \rightarrow \gamma e^{ \pm \mu} U_{ \pm 4 x}$

One-link integrals

one-link integral: $z(x, y)=\int d U e^{\bar{\chi}_{i x} U_{i j} \chi_{j y}-\bar{\chi}_{i y} U_{i j}^{\dagger} \chi_{j x}} \quad(y=x+\nu)$
invariant measure for group integrals:

- normalization $\int d U=1$
- invariance $\int d U f(U)=\int d U f(U V)=\int d U f(V U)$
(V arbitrary $\mathrm{SU}(N)$ matrix)
examples:

$$
\begin{array}{ll}
\int d U U_{i j} & \int d U U_{i j} U_{k l}^{\dagger} \\
\int d U U_{i j} U_{k l} & \int d U U_{i_{1} j_{1}} \ldots U_{i_{N} j_{N}}
\end{array}
$$

all integrals should be proportional to invariants $\delta_{i j}$ and $\epsilon_{i_{1} \ldots i_{N}}$

One-link integrals

$$
\int d U U_{i j}=\int d U U_{i j} U_{k l}=0 \quad \int d U U_{i j} U_{k l}^{\dagger}=\frac{1}{N} \delta_{i l} \delta_{j k}
$$

etc.
e what about $\int d U U_{i_{1} j_{1}} \ldots U_{i_{N} j_{N}}$?

- use

$$
\begin{gathered}
\operatorname{det} U=\epsilon_{i_{1} \ldots i_{N}} U_{i_{1} 1} U_{i_{2} 2 \ldots} \ldots U_{i_{N} N}=1 \\
\text { or } \quad \epsilon_{i_{1} \ldots i_{N}} U_{i_{1} j_{1}} U_{i_{2} j_{2}} \ldots U_{i_{N} j_{N}}=\epsilon_{j_{1} \ldots j_{N}}
\end{gathered}
$$

e result

$$
\int d U U_{i_{1} j_{1}} \ldots U_{i_{N} j_{N}}=\frac{1}{N!} \epsilon_{i_{1} \ldots i_{N}} \epsilon_{j_{1} \ldots j_{N}}
$$

One-link integrals

what should we get?

$$
z(x, y)=\int d U e^{\bar{\chi}_{x} U \chi_{y}-\bar{\chi}_{y} U^{\dagger} \chi_{x}}
$$

two ingredients:

- gauge invariance

$$
\chi_{x} \rightarrow \Omega_{x} \chi_{x} \quad \bar{\chi}_{x} \rightarrow \bar{\chi}_{x} \Omega_{x}^{\dagger}
$$

gauge invariant combinations

$$
\begin{array}{rlr}
M_{x}=\bar{\chi}_{i x} \chi_{i x} & \text { meson } \\
B_{x}=\frac{1}{N!} \epsilon_{i_{1} \ldots i_{N}} \chi_{i_{1}} \ldots \chi_{i_{N}} & \text { baryon } \\
\bar{B}_{x}=\frac{1}{N!} \epsilon_{i_{1} \ldots i_{N}} \bar{\chi}_{i_{N}} \ldots \bar{\chi}_{i_{1}} & \text { anti-baryon }
\end{array}
$$

- Grassmann variables: at most $N \chi_{i x}$'s at one site ($\chi_{i x}^{2}=0$ for fixed colour index i)

One-link integrals

- gauge invariance and Grassmann nature:

$$
z(x, y)=\sum_{k=0}^{N} \alpha_{k}\left(M_{x} M_{y}\right)^{k}+\tilde{\alpha}\left(\bar{B}_{x} B_{y}+(-1)^{N} \bar{B}_{y} B_{x}\right)
$$

combination of meson and baryon fields

$$
\begin{array}{ll}
M_{x}=\bar{\chi}_{i x} \chi_{i x} & \text { meson } \\
B_{x}=\frac{1}{N!} \epsilon_{i_{1} \ldots i_{N}} \chi_{i_{1}} \ldots \chi_{i_{N}} & \text { baryon } \\
\bar{B}_{x}=\frac{1}{N!} \epsilon_{i_{1} \ldots i_{N}} \bar{\chi}_{i_{N}} \ldots \bar{\chi}_{i_{1}} & \text { anti-baryon }
\end{array}
$$

determine coefficients $\alpha_{k}, \tilde{\alpha}$

Full partition function

- one-link partition function:

$$
z(x, y)=\sum_{k=0}^{N} \frac{(N-k)!}{N!k!}\left(M_{x} M_{y}\right)^{k}+\bar{B}_{x} B_{y}+(-1)^{N} \bar{B}_{y} B_{x}
$$

- to do: remaining Grassmann integrals:

$$
Z=\int \prod_{x} d \chi_{x} d \bar{\chi}_{x} e^{2 m_{9} \bar{\chi}_{x} \chi_{x}} \prod_{\nu} z(x, x+\nu)
$$

- for every site not yet fully occupied with mesons: expand $e^{2 m_{q} \bar{\chi}}$, e.g.

$$
\int d \chi_{x} d \bar{\chi}_{x} e^{2 m_{q} \bar{\chi}_{x} \chi_{x}}\left(\bar{\chi}_{x} \chi_{x}\right)^{k}=\frac{N!}{n_{x}!}\left(2 m_{q}\right)^{n_{x}} \quad n_{x}=N-k
$$

Full partition function

final result: all N_{c} quarks and anti-quarks below to either:

- hopping mesons $k=0, \ldots, N$
- hopping (anti-)baryons $\bar{B}_{x} B_{y}$ oriented
- left-over quarks $\left(M_{x}\right)^{n_{x}}$

- baryon loops: all χ_{i} are involved
- closed
- self-avoiding

Full partition function

- closed baryon loops
- monomer/dimer system: every site occupied by $N_{c}=3$ (anti)quarks

Full partition function

- closed baryon loops
- monomer/dimer system: every site occupied by $N_{c}=3$ (anti)quarks

- example configuration $\left(N_{c}=3\right)$:

Ensemble

sum over all these configurations, with proper weight:

- k_{b} dimers, n_{x} monomers, l_{B} baryon loops

$$
Z=\sum_{\left[k_{b}, n, l_{B}\right]} \prod_{\text {links }} \frac{\left(N-k_{b}\right)!}{N!k_{b}!} \prod_{x} \frac{N!}{n_{x}!}\left(2 m_{q}\right)^{n_{x}} \prod_{l_{B}} w\left(l_{B}\right)
$$

- chemical potential dependence?
- only in baryon loops winding around time direction!

$$
w\left(l_{B}\right) \sim \sigma\left(l_{B}\right) e^{r_{l_{B}} N_{c} N_{\tau} \mu}
$$

$r_{l_{B}}$: winding in temporal direction

Ensemble

baryon loop weight:

$$
w\left(l_{B}\right) \sim \sigma\left(l_{B}\right) e^{r_{l_{B}} N_{c} N_{\tau} \mu}
$$

- $r_{l_{B}}$: winding in temporal direction
- natural combination $r_{l_{B}} \times N_{c} \times N_{\tau} \times \mu=r_{l_{B}} \mu_{B} / T$
- $\sigma\left(l_{B}\right)= \pm 1$: geometrical factor, depends on loop
weight not positive-definite even at $\mu=0$!

Ensemble

aside: observables

- condensate

$$
\langle\bar{\chi} \chi\rangle=\frac{1}{\Omega} \frac{\partial}{\partial m_{q}} \ln Z \sim \frac{1}{\Omega}\left\langle\sum_{x} n_{x}\right\rangle
$$

monomer density

- baryon number

$$
\left\langle n_{B}\right\rangle=\frac{T}{V} \frac{\partial}{\partial \mu_{B}} \ln Z \sim \frac{1}{V}\left\langle\sum_{l_{B}} r_{l_{B}}\right\rangle
$$

winding number density of baryon loops

Sign problem

- even at $\mu=0$, baryon weight not positive-definite: geometric loop-dependent sign
- worse off?
general strategy: combine various contributions
- when summed analytically: positive contribution
task: identify proper configurations to sum analytically
Karsch \& Mütter 88
note:
- useful strategy in wide set of models
- but: what contributions to sum?

Sum contributions

every baryon loop can be combined with two chains of dimer loops

also in temporal direction

Sum contributions

separate weights: $w\left(l_{B}\right) \quad w\left(l_{B^{\prime}}\right) \quad w\left(l_{D}\right) \quad w\left(l_{D^{\prime}}\right)$

combine the weights in clever combinations: 'polymers'

$$
\begin{aligned}
& w\left(l_{P}\right)=w\left(l_{D}\right)+\frac{1}{2}\left[w\left(l_{B}\right)+w\left(l_{B^{\prime}}\right)\right] \\
& w\left(l_{P^{\prime}}\right)=w\left(l_{D^{\prime}}\right)+\frac{1}{2}\left[w\left(l_{B}\right)+w\left(l_{B^{\prime}}\right)\right]
\end{aligned}
$$

exactly same configurations

Sum contributions

combine the weights: polymer weights \quad (recall $\sigma\left(l_{B}\right)= \pm 1$)

monomer-dimer-polymer (MDP) system

- closed baryon loop: no μ dependence

$$
w\left(l_{P}\right)=1+\sigma\left(l_{B}\right) \geq 0
$$

- temporal loops: baryons $e^{+\mu}$ anti-baryons $e^{-\mu}$ combine

$$
w\left(l_{P}\right)=1+\sigma\left(l_{B}\right) \cosh \left(\frac{r_{l_{B}} \mu_{B}}{T}\right)
$$

non-negative when $\mu=0$: new sign problem solved
still sign problem remaining at $\mu \neq 0$

Sign problem

in practice: sign problem is mild

$$
\text { recall } \quad\left\langle e^{i \varphi}\right\rangle_{\mathrm{pq}}=\frac{Z}{Z_{\mathrm{pq}}}=e^{-\Omega \Delta f}
$$

- in this model: $\quad a^{4} \Delta f \lesssim 10^{-4}$
- sign problem under control on small volumes:

$$
\Omega=8^{3} \times 4 \quad \Leftrightarrow \quad \Omega \Delta f \sim 0.2
$$

Simulations

- sign problem present but mild
- simulations on small volumes: can use reweighting
why mild?
- fluctuating gauge fields integrated out first $(\beta=0)$
- different sampling of configuration space
- ... but not completely understood
aside
- other algorithmic improvement: worm algorithm

Strong coupling phase diagram

mean field prediction Y. Nishida 04, Ohnishi et al 05-now

- $m_{q}=0: 1^{\text {st }}$ order at low $T, 2^{\text {nd }}$ order at higher T separated at tricritical point (TCP)
- $m_{q}>0$: crossover at higher T, critical endpoint (CEP)

Strong coupling phase diagram

simulations

de Forcrand \& Fromm 08
$a m_{q}=0$
CEP for $a m_{q}>0$

qualitative agreement / quantitative deviation from MF note:

- Silver Blaze: $\quad\left\langle n_{B}\right\rangle=0 / 1 \quad\left(\mu<\mu_{c}\right) /\left(\mu>\mu_{c}\right)$
- immediate saturation

Ongoing research

- take $a_{\tau} \rightarrow 0$ (continuous time):
- sign problem absent even when $\mu \neq 0$
- reduced discretization (finite N_{τ}) effects
- corrections to strong-coupling limit:
- gluonic observables: Polyakov loop
- $\mathcal{O}(\beta)$ correction

Summary

strong coupling

- insight in QCD phase diagram
- test ground for alternative algorithms
- sign problem milder than in full QCD

